-
セミナー 明日開催
7th QGG Intensive Lectures: Emergence of space-time in matrix models
2024年12月17日(火) - 19日(木)
土屋 麻人 (静岡大学 教授)
Emergence of space-time is a key concept in matrix models as a nonperturbative formulation of string theory. In this lecture, starting with a brief introduction to nonperturbative effects in string theory, I will review various aspects of emergence of space-time in matrix models. The topics I discuss include dynamical triangulation, double scaling limit, eigenvalue instanton, large-N reduction, T-duality for D-brane effective theories (orbifolding), noncommutative geometry and covariant derivative interpretation. Finally, I will introduce the type IIB matrix model. (This is the 7th Intensive Lectures by Quantum Gravity Gatherings in iTHEMS. ) Program December 17 10.15~10.30 Registration and Coffee 10.30~12.00 Lecture 1 12.00~13.30 Lunch 13.30~15.00 Lecture 2 15.00~16.00 Coffee break 16.00~17.00 Lecture 3 17.30~19.30 Banquet December 18 10.15~11.45 Lecture 4 11.45~13.30 Lunch 13.30~15.00 Lecture 5 15.00~16.00 Coffee break 16.00~17.00 Lecture 6 December 19 10.15~11.45 Lecture 7 11.45~13.30 Lunch 13.30~15.00 Lecture 8 15.00~16.00 Coffee break 16.00~17.00 Lecture 9
会場: 研究本館 4階 435-437号室
イベント公式言語: 英語
-
セミナー
Dark Matter and Neutron Stars: A Gravitational Laboratory for the Unknown
2024年12月18日(水) 10:00 - 11:30
Ankit Kumar (高知大学 理工学部 学振外国人特別研究員)
Dark matter (DM), a mysterious non-luminous component of the universe, dominates the mass distribution in galaxies and clusters yet remains elusive in its interactions beyond gravity. Neutron stars (NSs), among the most compact objects in the universe, provide unique astrophysical laboratories to investigate the interplay between DM and extreme matter due to their immense densities and gravitational fields. In this talk, I will briefly outline the mechanisms through which DM could be gravitationally captured by NSs, including during their formation and evolution. The primary focus will then shift to the structural and observable implications of DM admixed NSs. I will discuss the theoretical frameworks used to model DM admixed NSs and how DM parameters, such as particle mass and density profiles, modify the equation of state and structural stability of these stars. Observational constraints from pulsars like PSR J0740+6620 and gravitational wave events such as GW170817 will be highlighted as critical tools for deducing DM characteristics and testing theoretical model predictions. By presenting insights from recent studies, including our own work, this talk aims to demonstrate how astrophysical observations can constrain DM parameters and provide a deeper understanding of DM’s role in dense astrophysical environments. I will conclude with a discussion of future prospects for advancing both theoretical models and observational strategies in this interdisciplinary field.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Stochastic Normalizing Flows for Lattice Field Theory
2024年12月18日(水) 15:30 - 16:30
Elia Cellini (PhD, Department of Physics, University of Turin, Italy)
Normalizing Flows (NFs) are a class of deep generative models that have recently been proposed as efficient samplers for Lattice Field Theory. Although NFs have demonstrated impressive performance in toy models, their scalability to larger lattice volumes remains a significant challenge, limiting their application to state-of-the-art problems. A promising approach to overcoming these scaling limitations involves combining NFs with non-equilibrium Markov Chain Monte Carlo (NEMCMC) algorithms, resulting in Stochastic Normalizing Flows (SNFs). SNFs harness the scalability of MCMC samplers while preserving the expressiveness of NFs. In this seminar, I will introduce the concepts of NEMCMC and NFs, demonstrate their combination into SNFs, and outline their connections with non-equilibrium thermodynamics. I will conclude by discussing key aspects of SNFs through their application to Effective String Theory, SU(3) gauge theory, and conformal field theory.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Applied plant genomics for evolutionary history, agriculture, and conservation
2024年12月19日(木) 16:00 - 17:00
アントニオ・エルナンデズ ロペズ (Professor, National Autonomous University of Mexico, Mexico)
I will explore the transformative role of genomic tools in understanding biological diversity across a range of organisms. By delving into the genetic blueprints of various species, we can unravel evolutionary histories, identify key traits for conservation, and develop strategies to preserve endangered ecosystems. Additionally, I will discuss practical applications of genomic data, such as enhancing agricultural biodiversity, improve traditional uses, and fostering sustainable development. Through case studies and recent advancements, this presentation highlights the critical intersection of genomics, biodiversity preservation, and its multifaceted uses in addressing global challenges.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
EOS Dependence on Cooling of Isolated Neutron Stars
2024年12月20日(金) 14:00 - 15:15
Stavros Fakiolas (Ph.D. Student, University of Oxford, UK)
Neutron stars - the densest stars in the Universe - cool down mainly by loss of neutrinos, emitted from the stars' interior due to particle reactions. By comparing cooling models with observed surface temperature or luminosity, one can probe the properties of high-density matter, such as what kind of particles and states exist inside neutron stars. In this presentation, I will first review cooling theory, focusing on the neutrino cooling processes. In particular, we focus on the equation of state (EOS) uncertainties, which significantly affect cooling curves. We discuss aspects such as the effect of including hyperons in our EOS. Using the updated cooling code, C-HERES, we calculate cooling curves with different EOS. Finally, we present the future prospects for this study.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Krylov subspace method for quantum dynamics
2024年12月23日(月) 14:00 - 15:00
高橋 和孝 (Postdoctoral Researcher, Department of Physics and Materials Science, University of Luxembourg, Luxembourg)
For a given system, the structure of the minimal subspace where the state unfolds determines the static and dynamical properties of the state. The Krylov subspace method is a mathematical framework for constructing the space systematically and has been applied to a wide variety of problems. The method was applicable only for systems with time-indepedent generators. As applications to quantum dynamics with time-dependent Hamiltonians, we discuss the constrution of the adiabatic gauge potential and the generalization of the Krylov algorithm to time-dependent generators.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Search for BSM particles from high energy supernova neutrinos
2025年1月10日(金) 14:00 - 15:15
秋田 謙介 (東京大学 大学院理学系研究科 JSPS特別研究員)
Light hypothetical particles with masses up to O(100) MeV can be produced in the core of supernovae. Their subsequent decays to neutrinos can produce a flux component with higher energies than the standard flux. We study the impact of heavy neutral leptons, Z′ bosons, in particular U(1)Lμ−Lτ and U(1)B−L gauge bosons, and majorons coupled to neutrinos flavor-dependently. We obtain new strong limits on these particles from no events of high-energy SN 1987A neutrinos and their future sensitivities from observations of galactic supernova neutrinos.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
その他
Visit by ASCENT-6E high school students
2025年1月13日(月) 10:40 - 16:00
PROGRAMME Visit of students enrolled in the ASCENT Program at Chiba University Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS): RIKEN Wako Campus (Wako City, Saitama) Event date: Monday, January 13th, 2025 ASCENT-6E Program: iTHEMS members: Schedule 10:30-10:40 (10 min): Arriving procedure 10:40-11:00 (20 min) at meeting room on the 4th floor, Main Research Building Introduction of students (to hear their names and scientific fields of interest). We will provide colour-coded badges to write their names and the colour would represent their field of interest (e.g., blue for biology, green for math, red for physics). 11:00-11:10 (10 min) Bathroom break 11:10-12:00 (50 min) at meeting room on the 4th floor, Main Research Building First set of talks by iTHEMS members (10 min each) Tetsuo Hatsuda (Physics, mathematics) Catherine Beauchemin (Physics, biology) Tsukasa Tada (Physics, mathematics) Gen Kurosawa (Biology) Misako Tatsuuma (Physics) 12:00-12:50 (50 min) at Common Space in the 4th floor of Main Research Building (tentative) Discussion Lunch with students 12:50-13:40 (50 min) at meeting room on the 4th floor, Main Research Building Second set of talks by iTHEMS members (10 min each) Akihisa Yamamoto (Physics, biology) Ryo Namba (Physics) Christy Kelly (Mathematics, physics) Rumi Hasegawa (Physics) Jose Gutierrez (Biology) 13:40-13:50 (10 min) at meeting room on the 4th floor, Main Research Building Brief overview of iTHEMS and RIKEN programmes (T.Hatsuda, C.Beauchemin, or T. Tada) (e.g., JRA, IPA, SPDR, RS/SRS) 13:50-14:00 (10 min) Bathroom break 14:00-14:15 (15 min) at meeting room on the 4th floor, Main Research Building (tentative) Short statements by Prof. Jun Nomura and ASCENT program coordinators Qian Wang and Hina Morishige 14:15-16:00 (105 min) at Common Space in the 4th floor of Main Research Building (tentative) Informal discussions among ASCENT program students and iTHEMS members over some snacks and coffee. iTHEMS members will spread at different areas in the common space of 3rd floor and will display posters or conduct activities that can facilitate discussion. If posters are used, they may be the ones used in the Now & Next or new ones.
会場: 研究本館 4階 435-437号室
イベント公式言語: 英語
-
セミナー
Principles of the evolution of human social structures: kinship and gift-giving
2025年1月16日(木) 16:00 - 17:15
板尾 健司 (理化学研究所 脳神経科学研究センター (CBS) 計算論的集団力学連携ユニット 基礎科学特別研究員)
Anthropologists have long noted structural similarities among geographically distant societies. To investigate the origins of these patterns, I develop simple models of human interactions based on field observations, simulating the emergence of social structures. This talk focuses on two key topics. The first examines the evolution of kinship structures in clan societies [1, 2, 3]. By modeling kin and in-law cooperation alongside mating competition, I show how cultural groups with specific marriage rules spontaneously emerge. The second explores the transition of social organizations through competitive gift-giving [4, 5]. By modeling how gifts deliver material goods to recipients and confer social reputation upon donors, I demonstrate transitions across four phases—band, tribe, chiefdom, and kingdom—each characterized by distinct social networks and distributions of wealth and reputation. In both cases, I highlight the alignment between theoretical predictions and empirical observations, offering quantitative criteria and empirically measurable explanatory parameters for classifying social structures.
会場: via Zoom / 研究本館 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Probabilistic approach to discrete integrable systems
2025年1月17日(金) 15:30 - 17:30
佐々田 槙子 (東京大学 大学院数理科学研究科・理学部数学科 教授)
The KdV equation and the Toda lattice are two central and widely studied examples of classical integrable systems, and many of their variations have been introduced to the present. In particular, the box-ball system (BBS) is a basic example of a discrete integrable system, which has been revealed to be an ultra-discrete version of the KdV equation and the Toda lattice. The BBS has been studied from various viewpoints such as tropical geometry, combinatorics, and cellular-automaton. As a new perspective, research on probabilistic approaches to this system has been rapidly expanding in recent years, including the application of the Pitman transform, analysis of invariant measures and its generalized hydrodynamics. More recently, we find that the application of the Pitman transform and the study of invariant measures of i.i.d.-type also work in the same manner for the discrete KdV equation and the discrete Toda lattice. Further research has begun on the relationship between the Yang-baxter maps and the existence of i.i.d.-type invariant measures for the discrete integrable systems. In this talk, I will introduce these new research topics that have been spreading over the past several years from the basics. This talk is based on several joint works with David Croydon, Tsuyoshi Kato, Satoshi Tsujimoto, Ryosuke Uozumi, Matteo Mucciconi, Tomohiro Sasamoto, Hayate Suda and Stefano Olla.
会場: セミナー室 (359号室)
イベント公式言語: 英語
-
セミナー
Quantum Error Mitigation
2025年1月28日(火) - 29日(水)
遠藤 傑 (NTTコンピュータ&データサイエンス研究所 理論量子情報研究センタ 准特別研究員)
Note for participants: For participants, please register from the above form. We may limit the number of participants due to the capacity of the lecture room. For participants in RIKEN who have already answered a questionnaire on this lecture, you do not have to register. Program: Day 1 (Jan. 28th) 10:30-12:00 Lecture 1 12:00-13:30 Lunch time 13:30-15:00 Lecture 2 15:00-15:30 Coffee break 15:30-17:00 Lecture 3 Day 2 (Jan. 29th) 10:30-12:00 Lecture 4 12:00-13:30 Lunch time 13:30-15:00 Lecture 5 15:00-15:30 Coffee break 15:30-17:00 Lecture 6 Abstract: Quantum Error Mitigation (QEM) offers a practical approach to reducing errors in noisy intermediate-scale quantum (NISQ) devices without requiring the encoding of qubits. In this seminar, I will begin by discussing the fundamentals of noise modeling in quantum systems, followed by an overview of QEM techniques, including extrapolation, probabilistic error cancellation (PEC), virtual distillation, quantum subspace expansion, and Clifford data regression. Next, I will present advanced QEM methods, such as the stochastic PEC approach, which mitigates the effects of Lindblad terms in Lindblad master equations and the generalized quantum subspace expansion, which is a unified framework of QEM. I will also explore recent research on the information-theoretic analysis of QEM, shedding light on its fundamental limits and connections to non-Markovian dynamics. Furthermore, I will discuss studies combining QEM with quantum error correction to enhance the reliability of computations in the early fault-tolerant quantum computing era. Lastly, I will highlight the relevance of hybrid tensor networks, particularly their connections to quantum subspace expansion techniques.
会場: 研究本館 4階 435-437号室
イベント公式言語: 英語
-
ワークショップ
Pebbles in Planet Formation
2025年2月10日(月) - 13日(木)
Research on planet formation involves various approaches, including explorations of small solar system bodies, observations of protoplanetary disks, dust experiments, simulations, and theoretical studies. One of the primary objectives in this field is to develop a comprehensive theory that explains how kilometer-sized planetesimals form from micrometer-sized dust grains, drawing upon findings from these diverse research methods. This workshop will focus on the concept of pebbles, which play a crucial role in the planet formation process. Pebbles — typically defined as solids ranging from millimeter to centimeter in size — are intermediate building blocks in planet formation, though their definition varies depending on the context. Assuming pebbles has led to theoretical advances in mechanisms such as streaming instability and pebble accretion, which promote the formation and growth of planetesimals. Additionally, pebbles have been linked to barriers against dust growth, such as the bouncing barrier. Furthermore, observations of protoplanetary disks have revealed the size distribution and porosity of solids, while the strength and thermal conductivity of comets obtained by the Rosetta mission suggest the accumulation of pebbles due to disk instabilities. However, inconsistencies have been pointed out between pebble formation and theories of dust growth. This workshop aims to revisit and refine our understanding of solid materials implicated in planet formation, particularly in light of findings from solar system explorations and protoplanetary disk observations. We aim to reevaluate the definition and role of pebbles in the broader context of planet formation, with a special focus on the current challenges and open questions in the field. The workshop will include discussions of experiments and simulations of dust growth and collisions, and planetesimal formation mechanisms such as streaming instability. The workshop features keynote talks from the perspectives of explorations, observations, experiments, simulations, and theories, and we also call for presentations on related topics.
会場: 国立天文台三鷹キャンパス (メイン会場) / via Zoom
イベント公式言語: 英語
-
ワークショップ
Third Workshop on Density Functional Theory: Fundamentals, Developments, and Applications (DFT2025)
2025年3月25日(火) - 27日(木)
The density functional theory (DFT) is one of the powerful methods to solve quantum many-body problems, which, in principle, gives the exact energy and density of the ground state. The accuracy of DFT is, in practice, determined by the accuracy of an energy density functional (EDF) since the exact EDF is still unknown. Currently, DFT has been used in many communities, including nuclear physics, quantum chemistry, and condensed matter physics, while the fundamental study of DFT, such as the first principle derivations of an accurate EDF and methods to calculate many observables from obtained densities and excited states, is still ongoing. However, there has been little opportunity to have interdisciplinary communication. On December 2022, we had the first workshop on this series (DFT2022) at Yukawa Institute for Theoretical Physics, Kyoto University, and several interdisciplinary discussions and collaborations were started. On February 2024, we had the second workshop on this series (DFT2024) at RIKEN Kobe Campus, and more stimulated discussion occured. To keep and extend collaborations, we organize the third workshop. Since the third workshop, we extend the scope of the workshop to the development and application of DFT as well. In this workshop, the current status and issues of each discipline will be shared towards solving these problems by meeting together among researchers in mathematics, nuclear physics, quantum chemistry, and condensed matter physics. This workshop mainly comprises lectures/seminars on cutting-edge topics and discussion, while sessions composed of contributed talks are also planned.
会場: 融合連携イノベーション推進棟(IIB) 8階 / via Zoom
イベント公式言語: 英語