Quantum Matterセミナー
27 イベント
-
セミナー
Ground-state phases of the one-dimensional SU(N)-symmetric Kondo lattice model
2023年5月11日(木) 17:00 - 18:15
戸塚 圭介 (京都大学 基礎物理学研究所 准教授)
The Kondo-lattice model and its variants (e.g., the Kondo-Heisenberg model), in which itinerant fermions interact with immobile magnetic moments via spin-exchange coupling (Kondo coupling), have been playing an important role in understanding the physics of heavy-fermion systems. In this talk, I begin by quickly explaining how the SU(N) Kondo-lattice model, in which the spin SU(2) symmetry is generalized to SU(N), is realized in actual physical systems (e.g., cold fermions and twisted bilayer graphene), and then I focus on the ground-state properties of its one-dimensional version. Specifically, when the Kondo coupling is sufficiently large, we find ferromagnetic metallic phases that can be established rigorously as well as several insulating ones. I also show that the SU(N) Kondo-lattice model provides a natural condensed-matter realization of supersymmetric [i.e., SU(N|1)] models. Various (insulating) phases at small Kondo coupling are then explored using the machinery of bosonization and various conformal field theory (CFT) techniques, and the results are compared with the predictions of the Lieb-Schultz-Mattis-type (or anomaly-matching) argument. Field: condensed matter physics Keywords: Kondo lattice model, SU(N) symmetry, supersymmetry, heavy-fermion systems, bosonization, conformal field theory
会場: via Webex
イベント公式言語: 英語
-
セミナー
Topological Kondo superconductors
2023年3月2日(木) 17:00 - 18:15
Dr. Yung-Yeh Chang (Postdoctoral Researcher, National Center for Theoretical Sciences & National Chiao Tung University, Taiwan)
Spin-triplet p-wave superconductors are promising candidates for topological superconductors. They have been proposed in various heterostructures where a material with strong spin-orbit interaction is coupled to a conventional s-wave superconductor by proximity effect. However, topological superconductors existing in nature and driven purely by strong electron correlations are yet to be studied. Here we propose a realization of such a system in a class of Kondo lattice materials in the absence of proximity effect. Therein, the odd-parity Kondo hybridization mediates ferromagnetic spin-spin coupling and leads to spin-triplet resonant-valence-bond (t-RVB) pairing between local moments. Spin-triplet p±p’ wave topological superconductivity is reached when Kondo effect co-exists with t-RVB [1]. We identify the topological nature by the non-trivial topological invariant and the Majorana zero modes at edges. Our results on the superconducting transition temperature, Kondo coherent scale, and onset temperature of Kondo hybridization not only qualitatively but also quantitatively agree with the observations for UTe2, a U-based ferromagnetic heavy-electron superconductor. *This work is supported by the National Science and Technology Council, Taiwan. Field: condensed matter physics Keywords: strongly correlated systems, topological superconductor, Kondo effect, resonant valence bond, heavy-fermion compounds
会場: via Webex
イベント公式言語: 英語
-
セミナー
Entanglement in non-Hermitian quantum systems and non-unitary conformal field theories
2023年2月9日(木) 17:00 - 18:15
Dr. Chang Po-Yao (Assistant Professor, Department of Physics, National Tsing Hua University, Taiwan)
Time: 5pm ~ 6:15pm (JST); 9am ~ 10:15am (CET); 4pm ~ 5:15pm (Taiwan) Entanglement is a powerful tool to diagnose many-body quantum systems. One example is the critical system where the low energy property can be described by conformal field theories (CFTs), and the central charge which uniquely characterizes the CFT can be perfectly extracted from the entanglement entropy. However, the entanglement properties for non-unitary CFTs are not well understood. Moreover, the entanglement properties in many-body microscopic models which can be described by non-unitary CFTs have not been explored. In this talk, I would like to demonstrate several non-Hermitian systems which can be described by non-unitary CFTs, and show their entanglement properties can be correctly obtained by the proposed generic entanglement entropy. Field: Condensed Matter Physics Keywords: non-Hermitian systems, conformal field theory, many-body systems, entanglement entropy
会場: via Webex
イベント公式言語: 英語
-
セミナー
Phantom Bethe excitations and spin helices in integrable spin chains
2022年9月15日(木) 17:00 - 18:15
Dr. Vladislav Popkov (University Wuppertal, Germany)
We demonstrate the existence of a special chiral “phantom” mode with some analogy to a Goldstone mode in the anisotropic quantum XXZ Heisenberg spin chain. The phantom excitations contribute zero energy to the eigenstate, but a finite fixed quantum of momentum. The mode exists not due to symmetry principles, but results from nontrivial scattering properties of magnons with momentum k given by the anisotropy via cos (k) = Jz/Jx. The mode originates from special string-type solutions of the Bethe ansatz equations with unbounded rapidities, the phantom Bethe roots. All such Bethe states are chiral (the simplest representative being factorized state with helicoidal magnetization profile) and exist in both periodic and open XXZ spin chain under fine-tuning. I show how phantom Bethe states can be generated dissipatively, by setting a polarization gradient via coupling the ends of the open spin chain to suitable dissipative baths. Spin helix eigenstates were observed and used in recent cold atom experiments, and led to further surprising findings.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Adiabatic pumps in quantum spin systems
2022年7月12日(火) 16:00 - 17:15
塩崎 謙 (京都大学 基礎物理学研究所 助教)
The Thouless pump is a one-parameter cycle of 1-dimensional gapped quantum systems with U(1) symmetry, which is classified by integers. In this talk, I introduce a generalization of the Thouless pump to quantum spin systems in any dimension with any finite group onsite symmetry. I show a simple model with Z_2 onsite symmetry, and how it is nontrivial via boundary degrees of freedom. Using the framework of the injective matrix product state, one can construct the topological invariant in a way similar to the Berry phase. If time allows, I will briefly introduce a group cohomology model by Roy and Harper for generic space dimensions and discuss its properties.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Topological quantum effects in low-dimensional spin systems - The power of the boundary
2022年6月30日(木) 17:00 - 18:15
Dr. Thore Posske (Group Leader, I. Institute for Theoretical Physics, University of Hamburg, Germany)
Manipulating the boundary of low-dimensional magnetic structures could grant control about topological magnetic quantum sates. I will discuss the creation of one- and two-dimensional topological quantum magnets by manipulating the boundary magnetization, address their stability against external perturbations, and discuss their possible application to quantum information processing.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Topological aspects of non-Hermitian physics
2022年6月21日(火) 16:00 - 17:15
大熊 信之 (京都大学 基礎物理学研究所 助教)
The past decades have witnessed an explosion of interest in topological materials, and a lot of mathematical concepts have been introduced in condensed matter physics. Among them, the bulk-boundary correspondence is the central topic in topological physics, which has inspired researchers to focus on boundary physics. Recently, the concepts of topological phases have been extended to non-Hermitian Hamiltonians, whose eigenvalues can be complex. Besides the topology, non-Hermiticity can also cause a boundary phenomenon called the non-Hermitian skin effect, which is an extreme sensitivity of the spectrum to the boundary condition. In this talk, I will explain recent developments in non-Hermitian topological physics by focusing mainly on the boundary problem. As well as the competition between non-Hermitian and topological boundary phenomena, I will discuss the topological nature inherent in non-Hermiticity itself. Field: condensed matter physics Keywords: topological materials, non-Hermitian systems, skin effect, bulk-boundary correspondence
会場: via Zoom
イベント公式言語: 英語
-
Introduction to Topological Insulators: The Ten-fold Classification of Topological Insulators and Superconductors Part.2
2022年6月13日(月) 14:00 - 15:30
邱 靖凱 (数理創造プログラム 上級研究員)
会場: via Zoom
イベント公式言語: 英語
-
Introduction to Topological Insulators: The Ten-fold Classification of Topological Insulators and Superconductors Part.1
2022年5月24日(火) 14:00 - 15:30
邱 靖凱 (数理創造プログラム 上級研究員)
会場: via Zoom
イベント公式言語: 英語
-
Introduction to Topological Insulators: Topological Superconductors and Quantum Computing
2022年5月9日(月) 14:00 - 15:30
邱 靖凱 (数理創造プログラム 上級研究員)
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Local and global topology for Dirac points with multi-helicoid surface states
2022年3月24日(木) 17:00 - 18:15
Dr. Tiantian Zhang (東京工業大学 理学院 特任助教)
Though topological invariants defined for topological semimetals are usually local ones, they also have a global nature. For example, the Z type local monopole charge C for Weyl points, has a global nature, telling us its influence to the rest of the Brillouin zone, giving rise to bulk-surface correspondence associated with helical surface states. In Dirac systems, helical surface states are not guaranteed due to C=0. However, a new bulk-surface correspondence associated with double/quad-helicoid surface states (DHSSs/QHSSs) can be obtained for Dirac points with the protection of a Z2 type monopole charge Q, which is defined in terms of the time-reversal (T)-glide (G) symmetry (TG)2= -1. Here we study the topology of Q for Z2 Dirac points and establish its bulk-surface correspondence with strict proofs. We find that Q is equivalent to the G-protected Z2 invariant v mathematically and physically in Z2 Dirac systems. This result is counterintuitive, since v is always trivial in T-preserving gapped systems, and was thought to be ill-defined in gapless systems. We offer a gauge-invariant formula for Q, which is associated with DHSSs in both the spinless and spinful systems with single G. Q is formulated in a simpler form in spinless systems with two vertical G, associated with QHSSs, which is also entangled with filling-enforced topological band insulators in three space groups when a T-breaking perturbation is introduced. Since Q is ill-defined in spinful systems with two vertical G, QHSSs will not be held. Material candidate Li2B4O7 together with a list of possible space groups preserving QHSSs are also proposed for demonstration on our theory and further studies. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
How is turbulence born: Spatiotemporal complexity and phase transition of transitional fluids
2022年2月24日(木) 17:00 - 18:15
Dr. Hong-Yan Shih (Assistant Research Fellow, Institute of Physics, Academia Sinica, Taiwan)
How a laminar flow becomes turbulence has been an unsolved problem for more than a century and is important in various industrial applications. Recently precise measurements in pipe flow experiments showed non-trivial spatiotemporal complexity at the onset of turbulence. Based on numerical evidence from the hydrodynamics equations, we discovered the surprising fact that the fluid behavior at the transition is governed by the emergent predator-prey dynamics of the important long-wavelength mode, leading to the mathematical prediction that the laminar-turbulent transition is analogous to an ecosystem on the edge of extinction. This prediction demonstrates that the laminar-turbulent transition is a non-equilibrium phase transition in the directed percolation universality class, and provides a unified picture of transition to turbulence emerging in systems ranging from turbulent convection to magnetohydrodynamics. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Bethe ansatz and quantum computing
2022年1月26日(水) 22:00 - 23:15
Prof. Rafael I. Nepomechie (Professor, Physics Department, University of Miami, Florida, USA)
We begin with a brief review of the Heisenberg quantum spin chain and its remarkable solution found by Bethe. We then review a probabilistic algorithm for preparing exact eigenstates of this model on a quantum computer. An exact formula for the success probability is presented, and the computation of correlation functions is discussed. A generalization of the algorithm to open chains with boundaries is also noted.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Topological exchange statistics in one dimension
2021年11月17日(水) 17:00 - 18:15
Prof. Harshman Nathan (Department of Physics, American University, USA)
In two dimensions, the topological approach to exchange statistics predicts the existence of anyons obeying statistics given by the braid group. However, in one dimension the topological approach is ambiguous because particles cannot exchange without coincidence and scattering. I will review the topological approach and show how old controversies can be resolved using orbifolds (roughly, manifolds with symmetry) to describe configuration space for one-dimensional systems. Using orbifolds also predicts new topological physics, including possibilities for “traid group” statistics when there are three-body interactions in one dimension and non-abelian statistics for indistinguishable particles on a ring. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Nonlinear response in strongly correlated systems
2021年10月20日(水) 17:00 - 18:15
Dr. Robert Peters (京都大学 大学院理学研究科 講師)
Nonlinear responses in condensed matter are intensively studied because they provide rich information about materials and hold the possibility of being applied in diodes or high-frequency optical devices [1-4]. While nonlinear responses in noninteracting models have been explored widely, the effect of strong correlations on the nonlinear response is still poorly understood. This talk will introduce a Green's function method to calculate nonlinear conductivities in strongly correlated materials [5-6]. Correlation effects are thereby included by the self-energy of the material. I will then use this method to study the nonlinear conductivities in noncentrosymmetric f-electron systems. The first system is a heavy Fermion system, where a nonreciprocal conductivity appears in the ferromagnetic phase. The nonreciprocal conductivity thereby always occurs perpendicular to the magnetization of the system and has a strong spin dependence, which might be advantageous for spintronic applications. The second system is a model corresponding to the Weyl-Kondo semimetal Ce3Bi4Pd3, in which a giant spontaneous Hall effect without time-reversal symmetry breaking has been observed [7]. This Hall effect can be explained as a nonlinear Hall effect in an inversion-symmetry broken Weyl-semimetal. It has been shown that the nonlinear Hall effect is related to the Berry curvature dipole [4]. Our study shows that the magnitude of the experimentally observed nonlinear Hall effect can be explained by the strong correlations inherent in this f-electron material [8]. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
Symmetry-based analysis for unconventional superconductors: Diagnosis of topological and nodal superconductivity
2021年10月12日(火) 16:00 - 17:15
小野 清志郎 (東京大学 工学系研究科 物理工学専攻)
The physics of unconventional superconductors has gained a new dimension in the past decade, thanks to the bloom in the understanding of topological quantum materials. Keeping in mind the success of the symmetry-based diagnosis in the large-scale discovery of topological insulator and semimetal candidates [1], it is natural to ask whether the approach can be generalized to superconducting systems. In this talk, I provide a unified way to diagnose topology and superconducting nodes in unconventional superconductors. First, I review symmetry-indicator theory for the topological insulators [2]. Also, I also discuss how to generalize the theory to superconductors [3,4,5]. Next, I show that the symmetry-based approach can extensively classify superconducting nodes pinned to high-symmetric momenta [6]. Finally, I show that these results enable us to derive the comprehensive correspondences between pairing symmetries and topological/nodal superconducting nature for each material [7]. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Wave function geometry and anomalous Landau levels of flat bands
2021年10月7日(木) 16:00 - 17:15
Prof. Bohm-Jung Yang (Associate Professor, Department of Physics and Astronomy, Seoul National University, Republic of Korea)
Semiclassical quantization of electronic states under magnetic field describes not only the Landau level spectrum but also the geometric responses of metals under a magnetic field. However, it is unclear whether this semiclassical idea is valid in dispersionless flat-band systems, in which an infinite number of degenerate semiclassical orbits are allowed. In this talk, I am going to show that the semiclassical quantization rule breaks down for a class of flat bands including singular flat bands [1-5] and isolated flat bands [6]. The Landau levels of such a flat band develop in the empty region in which no electronic states exist in the absence of a magnetic field. The total energy spread of the Landau levels of flat bands is determined by the quantum geometry of the relevant Bloch states, which is characterized by their Hilbert–Schmidt quantum distance and fidelity tensors. The results indicate that flat band systems are promising platforms for the direct measurement of the quantum geometry of wavefunctions in condensed matter. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Extended and interacting bound states in elemental superconductors
2021年9月1日(水) 16:00 - 17:15
Dr. Levente Rózsa (Condensed Matter Physics, University of Konstanz, Germany)
Combining magnetism with superconductivity leads to the emergence of localized states, including Majorana bound states predicted to be relevant for topological quantum computation. In this talk, I discuss how these bound states are influenced by the details of the electronic structure. It will be shown how the shape of the Fermi surface leads to a long-ranged anisotropic extension of Yu-Shiba-Rusinov states in the vicinity of magnetic impurities [1]. The same type of Fermi surface will be demonstrated to give rise to topologically trivial Caroli-de Gennes-Matricon bound states in vortex cores [2], with similar spatial profiles to those of topological Majorana bound states. The role of spin-orbit coupling will be discussed in the hybridization of Yu-Shiba-Rusinov bound states of dimers with ferromagnetic and antiferromagnetic spin alignments [3]. The general theoretical concepts will be illustrated by experimental realizations in specific materials. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Application of Machine Learning on Many-Body Problems
2021年8月23日(月) 16:00 - 17:15
Prof. Daw-Wei Wang (Professor, Department of Physics, National Tsinghua University, Taiwan)
Time: 4pm ~ 5:15pm (JST); 9am ~ 10:15am (CET); 3pm ~ 4:15pm (Taiwan) In this talk, I will briefly introduce the application of machine learning methods on quantum many-body problems. It includes a self-supervised learning approach to decide the topological phase transition in the systems of ultracold atoms by using Time-of-Flight images only without knowing any priori knowledge [1]. We then develop the Random Sampling Neural Networks for the investigation of quantum many body ground state properties in the strong interacting regime by a model rtained in the weak interacting regime [2]. Finally, we provide an Quantum-Inspired-Recurrent Neural Network, which could give a precise long-time dynamics of a quantum many-body system, even the model is trained in the short-time regime. We hope to show the great possibility to use machine learning as a new tool to investigate the quantum many-body problems. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Theory of Anomalous Floquet Higher-Order Topology
2021年5月26日(水) 22:00 - 23:15
Dr. Rui-Xing Zhang (University of Maryland, College Park, USA)
Periodically-driven or Floquet systems can realize anomalous topological phenomena that do not exist in any equilibrium states of matter, whose classification and characterization require new theoretical ideas that are beyond the well-established paradigm of static topological phases. In this work, we provide a general framework to understand anomalous Floquet higher-order topological insulators (AFHOTIs), the classification of which has remained a challenging open question. In two dimensions (2D), such AFHOTIs are defined by their robust, symmetry-protected corner modes pinned at special quasienergies, even though all their Floquet bands feature trivial band topology. The corner-mode physics of an AFHOTI is found to be generically indicated by 3D Dirac/Weyl-like topological singularities living in the phase spectrum of the bulk time-evolution operator. Physically, such a phase-band singularity is essentially a "footprint" of the topological quantum criticality, which separates an AFHOTI from a trivial phase adiabatically connected to a static limit. Strikingly, these singularities feature unconventional dispersion relations that cannot be achieved on any static lattice in 3D, which, nevertheless, resemble the surface physics of 4D topological crystalline insulators. We establish the above higher-order bulk-boundary correspondence through a dimensional reduction technique, which also allows for a systematic classification of 2D AFHOTIs protected by point group symmetries. We demonstrate applications of our theory to two concrete, experimentally feasible models of AFHOTIs protected by C2 and D4 symmetries, respectively. Our work paves the way for a unified theory for classifying and characterizing Floquet topological matters. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
27 イベント
イベント
カテゴリ
シリーズ
- iTHEMSコロキウム
- MACSコロキウム
- 産学連携数理レクチャー
- iTHEMS数学セミナー
- Dark Matter WGセミナー
- iTHEMS生物学セミナー
- 理論物理学セミナー
- 情報理論SGセミナー
- Quantum Matterセミナー
- Math-Physセミナー
- NEW WGセミナー
- ABBL-iTHEMSジョイントアストロセミナー
- 場の量子論セミナー
- STAMPセミナー
- QuCoInセミナー
- Number Theory Seminar
- Berkeley-iTHEMSセミナー
- iTHEMSセミナー
- iTHEMS-仁科センター中間子科学研究室ジョイントセミナー
- iTHEMS集中講義-Evolution of Cooperation
- 作用素環論
- 公開鍵暗号概論
- iTHES理論科学コロキウム
- 結び目理論
- SUURI-COOLセミナー
- iTHESセミナー