Quantum Matterセミナー
26 イベント
-
セミナー
Unconventional Spin Transport in Quantum Materials
2021年4月21日(水) 17:00 - 18:15
Dr. Se Kwon Kim (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea)
Recent advancements in spintronic techniques originally developed for spin-based devices now enable us to study fundamental spin physics of various quantum materials with unprecedented spin-current control and measurement, opening a new area of theoretical and experimental investigation of quantum systems. In this talk, we will introduce this emerging research area of spin transport in quantum materials which is fueled by the global interest in quantum information science. As examples, we will discuss our discovery of magnonic topological insulators realized by 2D magnets [1-3], which shows how spintronic techniques can be used for probing elusive quantum materials, and our prediction of long-range spin transport mediated by a vortex liquid in superconductors [4], which shows that quantum materials can provide novel platforms for efficient spin-transport devices. We will conclude the talk by offering a future outlook on quantum spintronics. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
What "Holography" is and how to use it
2021年4月14日(水) 17:00 - 18:15
Dr. Mario Flory (Instituto de Fisica Teorica, Universidad Autonoma de Madrid, Spain)
In this talk, I will give an introduction to the holographic principle and the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. I will also discuss the role that quantum entanglement plays in this correspondence via the Ryu-Takayanagi formula which maps the calculation of entanglement entropy to a geometric problem of extremal surfaces. Then, I will present a holographic model of a Kondo like effect as an example of how the AdS/CFT correspondence can be employed in practice. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Geometric nonlinear optical effects
2021年3月16日(火) 17:00 - 18:15
森本 高裕 (東京大学 大学院工学系研究科 物理工学専攻 准教授)
Time: 5pm ~ 6:15pm (JST); 9am ~ 10:15am (CET) The responses of materials to high intensity light, i.e., nonlinear optical responses, constitute a vast field of physics and engineering. While geometry and topology has been playing a central role in recent studies of condensed matters, geometrical aspects of nonlinear optical effects have not been fully explored so far. In this talk, I will show a few examples of nonlinear optical effects that have geometrical origins. First, I present that the second-order nonlinear optical effects including the shift-current, a candidate mechanism for recently discovered solar cell action in perovskite materials, has a close relationship to the modern theory of polarization, and is described by the Berry connection of Bloch wave function [1]. I will also discuss how electron correlations can enhance/modify shift current response in inversion broken materials. Next, I show that another second-order nonlinear effect, circular photogalvanic effect (CPGE), is governed by Berry curvature and shows quantization in Weyl semimetals [2]. I will report a recent measurement on chiral multifold fermion RhSi that observed a plateau structure in CPGE which is consistent with the expected quantization [3].
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Exceptional Topology of Non-Hermitian Systems: from Theoretical Foundations to Novel Quantum Sensors
2021年3月3日(水) 17:00 - 18:15
Prof. Jan Budich (Professor, Quantum Many-Body Physics, TU Dresden, Germany)
CET: 9:00a.m. - 10:15a.m. on March 3, 2021 JST: 5:00p.m. - 6:15p.m. on March 3, 2021 EST: 3:00a.m. - 4:15a.m. on March 3, 2021 In a broad variety of physical scenarios ranging from classical meta-materials to open quantum systems, non-Hermitian (NH) Hamiltonians have proven to be a powerful and conceptually simple tool for effectively describing dissipation. Motivated by recent experimental discoveries, investigating the topological properties of such NH systems has become a major focus of current research. In this talk, I give an introduction to this rapidly growing field, and present our latest results. Specifically, we discuss the occurrence of novel gapless topological phases unique to NH systems. There, the role of spectral degeneracies familiar from Hermitian systems such as Weyl semimetals is played by exceptional points at which the effective NH Hamiltonian becomes non-diagonalizable. Furthermore, we show how guiding principles of topological matter such as the bulk boundary correspondence are qualitatively changed in the NH realm. Finally, we demonstrate that the sensitivity of NH systems to small changes in the boundary conditions may be harnessed to devise novel high-precision sensors. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Mathematics of magic angles for bilayer graphene
2021年2月3日(水) 20:00 - 21:15
Mr. Simon Becker (Ph.D. Student, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK)
20:00pm ~ 21:15pm on Feb. 03th, 2021 (JST) 11:00am ~ 12:15am on Feb. 03th, 2021 (UK) Magic angles are a hot topic in condensed matter physics: when two sheets of graphene are twisted by those angles the resulting material is superconducting. Please do not be scared by the physics though: I will present a very simple operator whose spectral properties are thought to determine which angles are magical. It comes from a recent PR Letter by Tarnopolsky–Kruchkov–Vishwanath. The mathematics behind this is an elementary blend of representation theory (of the Heisenberg group in characteristic three), Jacobi theta functions and spectral instability of non-self-adjoint operators (involving Hoermander’s bracket condition in a very simple setting). The results will be illustrated by colourful numerics which suggest some open problems. This is joint work with M. Embree, J. Wittsten, and M. Zworski.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Time-dependent driven quantum critical systems in (1+1) dimension
2021年1月18日(月) 10:00 - 11:15
Dr. Xueda Wen (Postdocs, Physics Department, Harvard University, USA)
10:00am ~ 11:15am on Jan. 18th, 2021 (JST) 8:00pm ~ 9:15pm on Jan. 17th, 2021 (EST) I will introduce an analytically solvable setup for time-dependent driven quantum critical systems in (1+1)D, whose low-energy physics are described by conformal field theories. In general, one may observe two different phases (heating and non-heating), where the correlation functions such as the entanglement entropy and energy-momentum density can be analytically solved. The dependence of phase diagrams on (i) the types of driving Hamiltonians and (ii) the types of driving sequences (such as periodic, quasi-periodic and random drivings) will be discussed.
会場: via Zoom
イベント公式言語: 英語
26 イベント
イベント
カテゴリ
シリーズ
- iTHEMSコロキウム
- MACSコロキウム
- 産学連携数理レクチャー
- iTHEMS数学セミナー
- Dark Matter WGセミナー
- iTHEMS生物学セミナー
- 理論物理学セミナー
- 情報理論SGセミナー
- Quantum Matterセミナー
- Math-Physセミナー
- NEW WGセミナー
- ABBL-iTHEMSジョイントアストロセミナー
- 場の量子論セミナー
- STAMPセミナー
- QuCoInセミナー
- Number Theory Seminar
- Berkeley-iTHEMSセミナー
- iTHEMSセミナー
- iTHEMS-仁科センター中間子科学研究室ジョイントセミナー
- iTHEMS集中講義-Evolution of Cooperation
- 作用素環論
- 公開鍵暗号概論
- 結び目理論
- iTHES理論科学コロキウム
- SUURI-COOLセミナー
- iTHESセミナー