Math-Physセミナー
10 イベント
-
セミナー
Feynman’s proof of integrability of Calogero system from a modern point of view
2023年3月10日(金) 10:00 - 11:30
Yehao Zhou (東京大学 カブリ数物連携宇宙研究機構 (Kavli IPMU) 特任研究員)
In his last year of life Feynman was interested in integrable system, and in his study of Calogero models he came up with his own proof of the commutativity of integrals of motions of these models, which remains unpublished until it was transcribed by Polychronakos in 2018. His idea is to organize integrals of motions of a Calogero model into a generating function of differential operators which look like a correlation function in a certain free theory, then he showed that the generating function of differential operators commute for all spectral values, which leads to a proof of commutativity of integrals of motions. He commented on his proof “I learn nothing, no real clue as to why all this works, and what it means”. Recently in a joint work with Davide Gaiotto and Miroslav Rapcek we identify Feynman’s generating function as the correlation function of Miura operators in a W-algebra of type A, and in the rational and trigonometric cases we show that they equal to certain elements in the Dunkl representation of corresponding spherical Cherednik algebras in type A, which make the commutativity self-evident. This progress is a byproduct of a project in the study of M2-M5 brane junction in the M-theory.
会場: コモンルーム (246-248号室) / via Zoom
イベント公式言語: 英語
-
セミナー
String theory, N=4 SYM and Riemann hypothesis
2023年2月16日(木) 14:00 - 16:10
本多 正純 (京都大学 基礎物理学研究所 助教)
We discuss new relations among string theory, four-dimensional N=4 supersymmetric Yang-Mills theory (SYM) and the Riemann hypothesis. It is known that the Riemann hypothesis is equivalent to an inequality for the sum of divisors function σ(n). Based on previous results in literature, we focus on the fact that σ(n) appears in a problem of counting supersymmetric states in the N=4 SYM with SU(3) gauge group: the Schur limit of the superconformal index plays a role of a generating function of σ(n). Then assuming the Riemann hypothesis gives bounds on information on the 1/8-BPS states in the N=4 SYM. The AdS/CFT correspondence further connects the Riemann hypothesis to the type IIB superstring theory on AdS5×S5. In particular, the Riemann hypothesis implies a miraculous cancellation among Kaluza-Klein modes of the supergravity multiplet and D3-branes wrapping supersymmetric cycles in the string theory. We also discuss possibilities to gain new insights on the Riemann hypothesis from the physics side. This talk is based on a collaboration with Takuya Yoda (arXiv:220317091).
会場: コモンルーム 246-248号室 とZoomのハイブリッド開催
イベント公式言語: 英語
-
An Introduction to Rough Geometry (with a view to Euclidean Gravity)
2022年10月14日(金) 14:00 - 16:30
クリスティ・コウジ・ケリー (数理創造プログラム 基礎科学特別研究員)
The mathematical formulation of Einstein gravity typically utilises differentiable manifolds as models of smooth spacetimes. In many scenarios, however, it is desirable to have coarser models of spacetime and a correspondingly rough theory of geometry applicable to these coarser spacetime structures. In 2D Euclidean quantum gravity, for instance, the use of Regge calculus allows one to treat triangulations as regularisations of smooth spacetimes. There has been much recent progress in the mathematical (rigorous) understanding of this theory which we briefly review. We also introduce a rich alternative framework for the study coarse Euclidean geometry in the form of metric geometry augmented by optimal transport theory. In particular we introduce several optimal transport theoretic curvatures and demonstrate that these recover the familiar smooth notions under suitable limits.
会場: コモンルーム 246-248号室 とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Implications of singularity theorem for non-singular universe
2022年6月16日(木) 13:30 - 15:00
吉田 大介 (名古屋大学 大学院多元数理科学研究科 特任助教)
The singularity theorem by Penrose shows that a spacetime singularity arises in certain universal situations. The existence of a spacetime singularity is thought to represent a breakdown in the validity of theories such as general relativity and the phenomenological models of the universe. Thus, if we could build a correct model that describes the beginning of the universe, the universe predicted by that model should be non-singular. In this talk, we will discuss general properties that a non-singular universe must satisfy in order to avoid the singularity theorem. In particular, we will see that the universe must be, in some sense, smaller than the corresponding closed de Sitter spacetime.
会場: コモンルーム 246-248号室 とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Recent Progress in the Swampland Program
2022年5月19日(木) 14:00 - 15:30
野海 俊文 (神戸大学 大学院理学研究科 物理学専攻 宇宙論研究室 准教授)
In the past years, it has become increasingly clear that there exist nontrivial consistency conditions on symmetries in quantum gravity, that are invisible in classical gravity. The Swampland program aims at identifying such quantum gravity constraints and their implications for particle physics and cosmology, toward quantum gravity phenomenology. In this talk, I will review recent progress in this program, including my own works.
会場: コモンルーム 246-248号室 とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Self-adjoint extension in quantum mechanics and non-Rydberg spectra of one-dimensional hydrogen atom
2021年4月13日(火) 16:00 - 18:10
全 卓樹 (高知工科大学 環境理工学群 教授)
We offer a beginner’s guide to the functional-analytical techniques in quantum mechanics, and cover its application to the 1D Coulomb problem. It is shown that the wave function at the diverging point of the Coulomb potential is mathematically described by three-parameter family of generalized connection conditions. A scheme is devised to physically implement the generalized conditions, which provides the way to experimentally realize non-Rydberg spectra in 1D Hydrogen atom. Schedule: Part 1, Self-adjoint extension of Hilbert space operator Part 2, 1D Coulomb problem
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Non-perturbative tests of duality cascades in three dimensional supersymmetric gauge theories
2020年12月14日(月) 16:00 - 18:10
久保 尚敬 (京都大学 基礎物理学研究所 特別研究員)
M2-brane is an interesting object in M-theory and string theory. A three-dimensional 𝒩=6 super conformal Chern Simons theory with gauge group U(𝑁1)×𝑈(𝑁2), called ABJ theory, describes the low energy behavior of M2-brane On the one hand, it has been considered that when |𝑁1−𝑁2| is larger than the absolute value of Chern Simons level, the supersymmetry is broken. On the other hand, it was predicted that an interesting phenomenon called duality cascade occurs, and supersymmetry is not broken in some cases. Motivated by this situation, we performed non-perturbative tests by focusing on the partitionfunction on 𝑆3. The result strongly suggests that the duality cascade indeed occurs. We also proposed that the duality cascade occurs in theories with more general gauge groups and we performed non-perturbative tests in the same way. I will review and explain our physical prediction in the first half of my talk. In the second half of my talk , I will explain the non-perturbative tests . This part is mathematical because the partition function reduces to a matrix model by using the supersymmetric localization technique.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Mathematics of thermalization in isolated quantum systems
2020年11月10日(火) 16:00 - 18:10
白石 直人 (学習院大学 理学部 物理学科 助教)
If an isolated macroscopic quantum system is left at a nonequilibrium state, then this system will relax to the unique equilibrium state, which is called thermalization. Most of quantum many-body systems thermalize, while some many-body systems including integrable systems do not thermalize. What determines the presence/absence of thermalization and how to understand thermalization from microscopic quantum mechanics are profound long-standing problems. In the first part of my talk, I briefly review some established results of quantum thermalization. I first clarify the problem of thermalization in a mathematical manner, and then introduce several important results and insights: typicality of equilibrium states [1], relaxation caused by large effective dimension [2], and eigenstate thermalization hypothesis (ETH) [3,4] and weak-ETH [5]. In the second part of my talk, I explain some of my results. First, I introduce a model which is non-integrable and thermalizes but does not satisfy the ETH [6,7]. This finding disproves the conjectures that all nonintegrable systems satisfy the ETH and that the ETH is a necessary condition for thermalization. I also discuss the hardness of the problem of thermalization from the viewpoint of computational science [8]. Then, I move to an analytical approach to a concrete model, and prove that S=1/2 XYZ chain with a magnetic field is nonintegrable [9]. This is the first example of proof of nonintegrability in a concrete quantum many-body system, which will help a mathematical approach to thermalization.
会場: via Zoom
イベント公式言語: 英語
-
TQFT, integrable lattice model, and quiver gauge theories
2020年10月2日(金) 16:00 - 18:00
太田 敏博 (数理創造プログラム 研修生 / 大阪大学 大学院理学研究科)
1st part (math): In physics literature, “lattice models” appear quite often as mathematical models of physical systems, e.g. Ising model, vertex models, lattice gauge theory. The aim of the 1st part is to introduce ‘what is (T)QFT,’ ‘what is lattice model,’ and ‘what does integrability mean’ in the language of mathematics. In turn, they will play a crucial role in the 2nd part of my talk. I also hope that this will lead to a good exchange among us, especially between physicists and mathematicians. 2nd part (physics): In the 2nd part, I would like to explain where an integrable lattice model may come from, especially for people in the physics background. I will show a certain class of integrable lattice models is realized by Wilson-’t Hooft lines in 4d quiver gauge theories. I will also explain a bit how these gauge theories are constructed from brane configurations in string theory. String dualities allow us to relate the original 4d setups to 4d partially topological Chern-Simons theory, which is a partial TQFT and generates integrable lattice models. Please contact Keita Mikami's mail address to get access to the Zoom meeting room.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Geometric Perspective for the Theory of Hydrodynamic Limits
2020年8月31日(月) - 9月1日(火)
佐々田 槙子
坂内 健一 (慶應義塾大学 理工学部 数理科学科 教授)This is a series of lectures on "Geometric Perspectives for Fluid Dynamic Limit Theory" by the following speakers: [DAY 1: Aug 31] Dr. Makiko Sasada (University of Tokyo) [DAY 2: Sept 1] Prof. Kenichi Bannai (Keio University) Abstract: One of the fundamental problems in the natural and social sciences is to explain macroscopic phenomena that we can observe from the rules governing the microscopic system giving rise to the phenomena. Hydrodynamic limit provides a rigorous mathematical method to derive the deterministic partial differential equations describing the time evolution of macroscopic parameters, from the stochastic dynamics of a microscopic large scale interacting system. In the article "Topological Structures of Large Scale Interacting Systems via Uniform Locality" joint with Yukio Kametani, we introduce a general framework encompassing a wide variety of interacting systems in order to systematically investigate various microscopic stochastic large scale interacting systems in a unified fashion. In particular, we introduced a new cohomology theory called the uniformly local cohomology to investigate the underlying geometry of the interacting system. Our theory gives a new interpretation of the macroscopic parameters, the role played by the group action on the microscopic system, and the origin of the diffusion matrix associated to the macroscopic deterministic partial differential equation obtained via the space-time scaling limit of the microscopic system. The purpose of the series of lectures is to introduce to the audience the theory of hydrodynamic limits, especially the relation between the macroscopic observables and the microscopic interacting system. We then explain our new perspective of how geometry comes into play in investigating the interacting system, and introduce the ideas and results of our article. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
10 イベント