A bi-fidelity Asymptotic-Preserving Neural Network approach for multiscale kinetic problems
- 日時
- 2025年12月17日(水)11:00 - 12:00 (JST)
- 講演者
-
- Liu Liu (Assistant Professor, Department of Mathematics, The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Hong Kong)
- 会場
- セミナー室 (359号室) (メイン会場)
- via Zoom
- 言語
- 英語
- ホスト
- Antoine Diez
In this talk, we will introduce a bi-fidelity Asymptotic-Preserving Neural Network (BI-APNNs) framework, designed to efficiently solve forward and inverse problems for the linear Boltzmann equation. Our approach builds upon the previously studied Asymptotic-Preserving Neural Network (APNNs), which employs a micro-macro decomposition to handle the model’s multiscale nature. We specifically address a bottleneck in the original APNNs: the slow convergence of the macroscopic density in the near fluid-dynamic regime. This strategy significantly accelerates the training convergence as well as improves the accuracy of the forward problem solution, particularly in the fluid-dynamic limit. We show several numerical experiments on both linear Boltzmann and the Boltzmann-Poisson system that this new BI-APNN method produces more accurate and robust results for forward and inverse problems compared to the standard APNNs. This is a joint work with Zhenyi Zhu and Xueyu Zhu.
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。