Generative sampling with physics-informed kernels
- 日時
- 2025年12月8日(月)14:00 - 15:00 (JST)
- 講演者
-
- Renzo Kapust (Ph.D. Student, Institute for Theoretical Physics, University Heidelberg, Germany)
- 会場
- セミナー室 (359号室) (メイン会場)
- via Zoom
- 言語
- 英語
- ホスト
- Lingxiao Wang
We construct a generative network for Monte-Carlo sampling in lattice field theories and beyond, for which the learning of layerwise propagation is done and optimised independently on each layer. The architecture uses physics-informed renormalisation group flows that provide access to the layerwise propagation step from one layer to the next in terms of a diffusion equation for the respective renormalisation group kernel through a given layer. Thus, it transforms the generative task into that of solving once the set of independent and linear differential equations for the kernels of the transformation. As these equations are analytically known, the kernels can be refined iteratively. This allows us to structurally tackle out-of-domain problems generally encountered in generative models and opens the path to further optimisation. We illustrate the practical feasibility of the architecture within simulations in scalar field theories.
Reference
- Friederike Ihssen, Renzo Kapust, Jan M. Pawlowski, Generative sampling with physics-informed kernels, arXiv: 2510.26678
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。