-
Seminar Tomorrow
Entanglement of astrophysical neutrinos
December 10 (Tue) at 13:30 - 15:00, 2024
Baha Balantekin (Eugene P. Wigner Professor, Department of Physics, University of Wisconsin-Madison, USA)
Collective oscillations of neutrinos represent emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. In this talk, after a brief introduction, it will be shown that neutrinos exhibit interesting entanglement behavior in simplified models of those oscillations. Attempts to study this behavior using classical and quantum computers will be described. An intriguing connection to the heavy-element nucleosynthesis, namely the possibility of neutrino entanglement driving a new kind of i-process nucleosynthesis, will be introduced,
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar Tomorrow
Studying quark-gluon plasma with multi-stage dynamical models in relativistic nuclear collisions
December 10 (Tue) at 15:30 - 17:00, 2024
Yuuka Kanakubo (Postdoctoral Researcher, iTHEMS)
A collision of relativistically accelerated large nuclei creates the hottest matter on Earth — quark-gluon plasma (QGP). The properties of QGP have been studied through comparisons of final-state particle distributions between theoretical models and experimental data. To quantitatively constrain QGP properties, it is necessary to build Monte Carlo models that simulate the space-time evolution of the system throughout the entire collision process. This includes the initial matter production from the accelerated nuclei, the evolution of QGP, hadronisation, and the evolution of hadron gas. In this talk, I will first explain how theoretical models, based on relativistic hydrodynamics and hadronic transport, are conventionally built and how they successfully extract QGP properties. Next, I will discuss a hot topic: the possibility of finding QGP in proton-proton collisions, based on results from a state-of-the-art model that includes both equilibrated and non-equilibrated systems. Also, I will introduce a novel Monte Carlo initial state model based on perturbative QCD minijet production supplemented with a saturation picture. This Monte-Carlo EKRT model is one of the first initial state models for hydrodynamics to describe initial particle production from small to large momentum within a single framework, where total energy-momentum and charge conservations are imposed.
Venue: #359 3F, Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Simulating Parton Fragmentation on Quantum Computers
December 11 (Wed) at 13:30 - 15:00, 2024
Tianyin Li (Ph.D. Student, Institute of Quantum Matter, South China Normal University, China)
Parton fragmentation functions (FFs) are indispensable for understanding processes of hadron production ubiquitously existing in high-energy collisions, but their first principle determination has never been realized due to the insurmountable difficulties in encoding their operator definition using traditional lattice methodology. We propose a framework that makes a first step for evaluating FFs utilizing quantum computing methodology. The key element is to construct a semi-inclusive hadron operator for filtering out hadrons of desired types in a collection of particles encoded in the quantum state. We illustrate the framework by elaborating on the Nambu-Jona-Lasinio model with numeral simulations. Remarkably, We show that the semi-inclusive hadron operator can be constructed efficiently with a variational quantum algorithm. Moreover, we develop error mitigation techniques tailed for accurately calculating the FFs in the presence of quantum noises. Our work opens a new avenue for investigating QCD hadronization on near-term quantum computers.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
How Neural Networks reduce the Fermionic Sign Problem and what we can learn from them
December 11 (Wed) at 15:30 - 16:30, 2024
Johann Ostmeyer (Post-doctoral Fellow, Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Germany)
When simulating fermionic quantum systems, non-perturbative Monte Carlo techniques are often the most efficient approach known to date. However, beyond half filling they suffer from the so-called sign problem, i.e. negative "probabilities", so that stochastic sampling becomes infeasible. Recently, considerable progress has been made in alleviating the sign problem by deforming the integration contour of the path integral into the complex plane and applying machine learning to find near-optimal alternative contours. In this talk, I am going to present a particularly successful architecture, based on complex-valued affine coupling layers. Furthermore, I will demonstrate how insight gained from the trained network can be used for simpler analytic approaches.
Venue: via Zoom / Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Mechanism for Converting Temporal Rhythms into Spatial Patterns of Body Segment
December 12 (Thu) at 13:00 - 14:00, 2024
Koichiro Uriu (Associate Professor, School of Life Science and Technology, Institute of Science Tokyo)
In development, spatially periodic structures are spontaneously formed in various tissues. These developmental structures are also formed in a proper temporal order. How is such spatial and temporal coordination achieved in morphogenesis? In this presentation, we discuss the mechanism that translates temporal rhythms of gene expression into spatially periodic patterns in vertebrate body segment formation. Mechanisms for converting oscillatory signals into vertebrate body segments have been proposed previously. Cooke and Zeeman 1976 proposed the Clock and Wavefront model based on the concept of the catastrophe theory. Still, it remains unclear how this conceptual model actually works in embryos. Here we develop a mathematical model aided by recent imaging and molecular genetics data and reveal a spatiotemporal bifurcation structure for vertebrate segment formation by using the dynamical systems theory.
Venue: Seminar Room #359 / via Zoom
Event Official Language: English
-
Seminar
Recent Advances in the Spectral Geometry of Domains and Approaches with Computer-Assisted Proofs
December 12 (Thu) at 15:00 - 17:00, 2024
Ryoki Endo (Ph.D. Student, Fundamental Sciences, Graduate School of Science and Technology, Niigata University)
What can we determine about the shape of a drum from its sound?"—This inverse problem has given rise to spectral geometry and has attracted researchers for over 110 years. The first half of the talk explains recent advances in shape optimization problems for domains with respect to eigenvalues of the Laplacian and the inverse problem known as "hearing the shape of a drum," presented in an accessible manner for experts from other disciplines. The second half introduces verified computation methods for eigenvalues, eigenfunctions, and shape derivatives. As applications, it presents newly established computer-assisted proofs for the minimization problem of eigenvalues with non-homogeneous Neumann boundary conditions, and the conjecture on the simplicity of the second Dirichlet eigenvalues for non-equilateral triangles.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Particle acceleration in relativistic astrophysical plasmas
December 13 (Fri) at 14:00 - 15:15, 2024
Camilia Demidem (Research Scientist, iTHEMS)
Relativistic astrophysical objects often display evidence of very efficient particle acceleration, such as X-ray and gamma-ray nonthermal emission and are widely recognized as potential sources of cosmic rays. Elucidating the physical mechanisms that turn these environments into such formidable particle accelerators is a longstanding problem of high-energy astrophysics. In this talk, I will briefly explain why shocks and turbulence, naturally expected to occur in these environments, could play an essential role in the acceleration of particles. I will then discuss some of the challenges that poses the description of these nonlinear processes, especially in the context of high-energy astrophysical sources, which involve astronomical ranges of scales and physical conditions much more extreme than we can probe in our laboratories or in the Solar system. Finally, I will share some recent results from my simulations.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Detecting single gravitons with quantum controlled mechanical oscillators
December 16 (Mon) at 14:00 - 15:30, 2024
Germain Tobar (PhD Fellow, Stockholm University, Norway)
The quantisation of gravity is widely believed to result in gravitons - particles of discrete energy that form gravitational waves. But their detection has so far been considered impossible. Here we show that signatures of single gravitons can be observed in laboratory experiments. We show that stimulated and spontaneous single graviton processes can become relevant for massive quantum acoustic resonators and that stimulated absorption can be resolved through optomechanical read-out of single phonons of a multi-mode bar resonator. We analyse the feasibility of observing a signal from the inspiral, merger and post-merger phase of a compact binary inspiral. Our results show that single graviton signatures are within reach of experiments. In analogy to the discovery of the photoelectric effect for photons, such signatures can provide the first experimental evidence of the quantisation of gravity. [1] G. Tobar, S. K. Manikandan, T. Beitel, and I. Pikovski, Nature Communications 15, 7229. [2] G. Tobar, Igor Pikovski ,Michael E. Tobar, arXiv:2406.16898 (2024).
Venue: #359, 3F, Seminar Room #359
Event Official Language: English
-
Seminar
Hopfions in Condensed Matter and Field Theory
December 16 (Mon) at 16:00 - 17:30, 2024
Avadh Saxena (Professor, Los Alamos National Laboratory, USA)
Abstract: Nontrivial topological defects such as knotted solitons called hopfions have been observed in a variety of materials including chiral magnets, nematic liquid crystals and even in ferroelectrics as well as studied in other physical contexts such as Bose-Einstein condensates. These topological entities can be modeled using the relevant physical variable, e.g., magnetization, polarization or the director field. Specifically, we find exact static soliton solutions for the unit spin vector field of an inhomogeneous, anisotropic three-dimensional (3D) Heisenberg ferromagnet and calculate the corresponding Hopf invariant H analytically and obtain an integer, demonstrating that these solitons are indeed hopfions [1]. H is a product of two integers, the first being the usual winding number of a skyrmion in two dimensions, while the second encodes the periodicity in the third dimension. We also study the underlying geometry of H, by mapping the 3D unit vector field to tangent vectors of three appropriately defined space curves. Our analysis shows that a certain intrinsic twist is necessary to yield a nontrivial topological invariant: linking number [2]. Finally, we focus on the formation energy of hopfions to study their properties for potential applications. Short bio: Avadh Saxena is former Group Leader of the Condensed Matter and Complex Systems group (T-4) at Los Alamos National Lab, New Mexico, USA where he has been since 1990. He is also an affiliate of the Center for Nonlinear Studies at Los Alamos. His main research interests include phase transitions, optical, electronic, vibrational, transport and magnetic properties of functional materials, device physics, soft condensed matter, non-Hermitian quantum mechanics, geometry, topology and nonlinear phenomena & materials harboring topological defects such as solitons, polarons, excitons, breathers, skyrmions and hopfions. He recently completed a book on “Phase Transitions from a Materials Perspective” (Cambridge University Press, 2024). He is an Affiliate Professor at the Royal Institute of Technology (KTH), Stockholm, Sweden and holds adjunct professor positions at the University of Barcelona, Spain, University of Crete, Greece, Virginia Tech and the University of Arizona, Tucson. He is Scientific Advisor to National Institute for Materials Science (NIMS), Tsukuba, Japan. He is a Fellow of Los Alamos National Lab, a Fellow of the American Physical Society (APS), a Fellow of the Japan Society for the Promotion of Science (JSPS) and a member of the Sigma Xi Scientific Research Society, APS and American Ceramic Society (ACerS).
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
7th QGG Intensive Lectures: Emergence of space-time in matrix models
December 17 (Tue) - 19 (Thu), 2024
Asato Tsuchiya (Professor, Shizuoka University)
Emergence of space-time is a key concept in matrix models as a nonperturbative formulation of string theory. In this lecture, starting with a brief introduction to nonperturbative effects in string theory, I will review various aspects of emergence of space-time in matrix models. The topics I discuss include dynamical triangulation, double scaling limit, eigenvalue instanton, large-N reduction, T-duality for D-brane effective theories (orbifolding), noncommutative geometry and covariant derivative interpretation. Finally, I will introduce the type IIB matrix model. (This is the 7th Intensive Lectures by Quantum Gravity Gatherings in iTHEMS. ) Program December 17 10.15~10.30 Registration and Coffee 10.30~12.00 Lecture 1 12.00~13.30 Lunch 13.30~15.00 Lecture 2 15.00~16.00 Coffee break 16.00~17.00 Lecture 3 17.30~19.30 Banquet December 18 10.15~11.45 Lecture 4 11.45~13.30 Lunch 13.30~15.00 Lecture 5 15.00~16.00 Coffee break 16.00~17.00 Lecture 6 December 19 10.15~11.45 Lecture 7 11.45~13.30 Lunch 13.30~15.00 Lecture 8 15.00~16.00 Coffee break 16.00~17.00 Lecture 9
Venue: #435-437, 4F, Main Research Building
Event Official Language: English
-
Seminar
Stochastic Normalizing Flows for Lattice Field Theory
December 18 (Wed) at 15:30 - 16:30, 2024
Elia Cellini (PhD, Department of Physics, University of Turin, Italy)
Normalizing Flows (NFs) are a class of deep generative models that have recently been proposed as efficient samplers for Lattice Field Theory. Although NFs have demonstrated impressive performance in toy models, their scalability to larger lattice volumes remains a significant challenge, limiting their application to state-of-the-art problems. A promising approach to overcoming these scaling limitations involves combining NFs with non-equilibrium Markov Chain Monte Carlo (NEMCMC) algorithms, resulting in Stochastic Normalizing Flows (SNFs). SNFs harness the scalability of MCMC samplers while preserving the expressiveness of NFs. In this seminar, I will introduce the concepts of NEMCMC and NFs, demonstrate their combination into SNFs, and outline their connections with non-equilibrium thermodynamics. I will conclude by discussing key aspects of SNFs through their application to Effective String Theory, SU(3) gauge theory, and conformal field theory.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
EOS Dependence on Cooling of Isolated Neutron Stars
December 20 (Fri) at 14:00 - 15:15, 2024
Stavros Fakiolas (Ph.D. Student, University of Oxford, UK)
Neutron stars - the densest stars in the Universe - cool down mainly by loss of neutrinos, emitted from the stars' interior due to particle reactions. By comparing cooling models with observed surface temperature or luminosity, one can probe the properties of high-density matter, such as what kind of particles and states exist inside neutron stars. In this presentation, I will first review cooling theory, focusing on the neutrino cooling processes. In particular, we focus on the equation of state (EOS) uncertainties, which significantly affect cooling curves. We discuss aspects such as the effect of including hyperons in our EOS. Using the updated cooling code, C-HERES, we calculate cooling curves with different EOS. Finally, we present the future prospects for this study.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Search for BSM particles from high energy supernova neutrinos
January 10 (Fri) at 14:00 - 15:15, 2025
Kensuke Akita (JSPS Research Fellow, Graduate School of Science, The University of Tokyo)
Light hypothetical particles with masses up to O(100) MeV can be produced in the core of supernovae. Their subsequent decays to neutrinos can produce a flux component with higher energies than the standard flux. We study the impact of heavy neutral leptons, Z′ bosons, in particular U(1)Lμ−Lτ and U(1)B−L gauge bosons, and majorons coupled to neutrinos flavor-dependently. We obtain new strong limits on these particles from no events of high-energy SN 1987A neutrinos and their future sensitivities from observations of galactic supernova neutrinos.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Quantum Error Mitigation
January 28 (Tue) - 29 (Wed), 2025
Suguru Endo (Ph.D. Researcher, Research Center for Theoretical Quantum Information, NTT Computer and Data Science Laboratories)
Note for participants: For participants outside RIKEN, we are preparing a registration form. Due to the capacity of the lecture room, we may limit the number of participants. For participants in RIKEN who have already answered a questionnaire on this lecture, you do not have to register. Program: Day 1 (Jan. 28th) 10:30-12:00 13:30-15:00 15:30-17:00 Day 2 (Jan. 29th) 10:30-12:00 13:30-15:00 15:30-17:00 Abstract: Quantum Error Mitigation (QEM) offers a practical approach to reducing errors in noisy intermediate-scale quantum (NISQ) devices without requiring the encoding of qubits. In this seminar, I will begin by discussing the fundamentals of noise modeling in quantum systems, followed by an overview of QEM techniques, including extrapolation, probabilistic error cancellation (PEC), virtual distillation, quantum subspace expansion, and Clifford data regression. Next, I will present advanced QEM methods, such as the stochastic PEC approach, which mitigates the effects of Lindblad terms in Lindblad master equations and the generalized quantum subspace expansion, which is a unified framework of QEM. I will also explore recent research on the information-theoretic analysis of QEM, shedding light on its fundamental limits and connections to non-Markovian dynamics. Furthermore, I will discuss studies combining QEM with quantum error correction to enhance the reliability of computations in the early fault-tolerant quantum computing era. Lastly, I will highlight the relevance of hybrid tensor networks, particularly their connections to quantum subspace expansion techniques.
Venue: #435-437, 4F, Main Research Building
Event Official Language: English
-
Workshop
Pebbles in Planet Formation
February 10 (Mon) - 13 (Thu), 2025
Research on planet formation involves various approaches, including explorations of small solar system bodies, observations of protoplanetary disks, dust experiments, simulations, and theoretical studies. One of the primary objectives in this field is to develop a comprehensive theory that explains how kilometer-sized planetesimals form from micrometer-sized dust grains, drawing upon findings from these diverse research methods. This workshop will focus on the concept of pebbles, which play a crucial role in the planet formation process. Pebbles — typically defined as solids ranging from millimeter to centimeter in size — are intermediate building blocks in planet formation, though their definition varies depending on the context. Assuming pebbles has led to theoretical advances in mechanisms such as streaming instability and pebble accretion, which promote the formation and growth of planetesimals. Additionally, pebbles have been linked to barriers against dust growth, such as the bouncing barrier. Furthermore, observations of protoplanetary disks have revealed the size distribution and porosity of solids, while the strength and thermal conductivity of comets obtained by the Rosetta mission suggest the accumulation of pebbles due to disk instabilities. However, inconsistencies have been pointed out between pebble formation and theories of dust growth. This workshop aims to revisit and refine our understanding of solid materials implicated in planet formation, particularly in light of findings from solar system explorations and protoplanetary disk observations. We aim to reevaluate the definition and role of pebbles in the broader context of planet formation, with a special focus on the current challenges and open questions in the field. The workshop will include discussions of experiments and simulations of dust growth and collisions, and planetesimal formation mechanisms such as streaming instability. The workshop features keynote talks from the perspectives of explorations, observations, experiments, simulations, and theories, and we also call for presentations on related topics.
Venue: National Astronomical Observatory of Japan (Mitaka Campus) (Main Venue) / via Zoom
Event Official Language: English
-
Workshop
Third Workshop on Density Functional Theory: Fundamentals, Developments, and Applications (DFT2025)
March 25 (Tue) - 27 (Thu), 2025
The density functional theory (DFT) is one of the powerful methods to solve quantum many-body problems, which, in principle, gives the exact energy and density of the ground state. The accuracy of DFT is, in practice, determined by the accuracy of an energy density functional (EDF) since the exact EDF is still unknown. Currently, DFT has been used in many communities, including nuclear physics, quantum chemistry, and condensed matter physics, while the fundamental study of DFT, such as the first principle derivations of an accurate EDF and methods to calculate many observables from obtained densities and excited states, is still ongoing. However, there has been little opportunity to have interdisciplinary communication. On December 2022, we had the first workshop on this series (DFT2022) at Yukawa Institute for Theoretical Physics, Kyoto University, and several interdisciplinary discussions and collaborations were started. On February 2024, we had the second workshop on this series (DFT2024) at RIKEN Kobe Campus, and more stimulated discussion occured. To keep and extend collaborations, we organize the third workshop. Since the third workshop, we extend the scope of the workshop to the development and application of DFT as well. In this workshop, the current status and issues of each discipline will be shared towards solving these problems by meeting together among researchers in mathematics, nuclear physics, quantum chemistry, and condensed matter physics. This workshop mainly comprises lectures/seminars on cutting-edge topics and discussion, while sessions composed of contributed talks are also planned.
Venue: 8F, Integrated Innovation Building (IIB) / via Zoom
Event Official Language: English