-
Seminar
Universality class for driven interfaces and... integrable spin hydrodynamics?
May 19 (Mon) at 15:00 - 17:00, 2025
Kazumasa A. Takeuchi (Associate Professor, Graduate School of Science, The University of Tokyo)
The Kardar-Parisi-Zhang (KPZ) universality class, originally formulated to describe driven systems such as growing interfaces, has undergone several paradigm shifts [1]. One major breakthrough was the discovery of exact solutions for one-dimensional models within the KPZ class — remarkable given their non-equilibrium and non-linear nature — enabled by underlying integrability. These exact results revealed nontrivial fluctuation properties, some closely linked to random matrix theory, which were subsequently observed in real experiments on driven interfaces. But more recently, the KPZ framework appears to be entering a new phase, extending unexpectedly to integrable spin chains at thermal equilibrium [2,3]. Although this connection was nearly dismissed when clear discrepancy in full counting statistics was reported, the speaker and collaborators numerically found that various two-point quantities agree precisely with KPZ exact solutions, so the KPZ class indeed governs integrable spin chains, yet only their two-point quantities [4]. I will also discuss a recent hydrodynamic theory aiming to bridge spin chains and KPZ, which, currently, falls short of fully explaining the numerical observations and calls for further refinement [2,3].
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Moss sporophytes and their consumers: an overlooked interaction
May 22 (Thu) at 13:00 - 14:00, 2025
Yume Imada (Assistant Professor, Division of Biological Sciences, Graduate School of Science, Kyoto University)
The evolution of plant-feeding in animals is deeply intertwined with the unintentional transport of diaspores. Zoochory (the dispersal of plant diaspores by animals) has been extensively studied in flowering plants, particularly with regard to seeds and fruits. Bryophytes, in contrast, have poorly been investigated, despite possessing traits favorable for animal-mediated dispersal: they are small, easily transported, and exhibit high totipotent capacity. It has long been believed that bryophytes are rarely consumed by animals. However, our field survey into sporophyte-feeding across diverse forest-dwelling mosses (the largest clade of bryophytes) revealed the ubiquity of spore consumption. This finding prompts a re-evaluation of the ecological function of the sporophyte in the alternation of generations in mosses. Moreover, our data suggest that this interaction may be framed within the mutualism–antagonism continuum. Finally, I aim to clarify key questions surrounding the reproduction and dispersal of spore-producing plants, particularly bryophytes.
Venue: via Zoom (Main Venue) / Seminar Room #359
Event Official Language: English
-
Seminar
Beyond-classical simulations using a quantum annealer
May 23 (Fri) at 10:00 - 11:15, 2025
Alberto Nocera (Senior Staff Scientist, Stewart Blusson Quantum Matter Institute, The University of British Columbia, Canada)
Join us for an electrifying online zoom talk featuring Dr. Alberto Nocera, the author of the groundbreaking Science article detailing D-Wave's quantum annealer outperforming classical supercomputers in simulating complex magnetic materials. D-Wave’s quantum annealer uses quantum annealing to efficiently solve optimization problems by finding low-energy states of complex systems. Unlike IBM and Quantinuum’s gate-based quantum computers, which are universal and execute algorithms via quantum circuits, D-Wave’s system is specialized but currently more scalable and practical for certain applications. While gate-based systems are still limited by noise and error rates, D-Wave’s annealer recently demonstrated a quantum advantage in simulating magnetic materials, outperforming classical supercomputers. This highlights a key difference: D-Wave excels in specific tasks today, while IBM and Quantinuum aim for broader, long-term quantum computational capabilities. Talk Abstract: Solving the equations governing the dynamics of interacting many-particle quantum systems is one of the biggest challenges in modern science. In 1982, Richard P. Feynman envisioned that the best way to emulate the behavior of many-particle quantum systems is to use another quantum system, starting the field of quantum simulation. Rather than seeking to solve the fundamental equations of quantum mechanics using conventional or classical computers, in quantum simulation one seeks to simulate a quantum system using an "analog device" mimicking its behavior, hoping to access solutions which are not easy to compute otherwise. In this talk, using the quantum annealing simulator device developed by D-Wave as a main tool, I will show that the use of tensor network methods has a key role in quantum simulation: besides benchmarking the quantum device, they can assess and help establishing its functionality beyond the classically simulatable regime [1].
Venue: via Zoom
Event Official Language: English
-
Seminar
SISSI: Supernovae in a Shearing, Stratified Interstellar Medium
May 23 (Fri) at 14:00 - 15:15, 2025
Leonard Romano (Ph.D. Student, Ludwig-Maximilians-Universität München, Germany)
Supernovae (SNe) are an important driver of the multiphase structure in the Interstellar Medium (ISM) and play an important role for regulating star formation. SNe inflate large bubbles of hot gas dubbed Supernova Remnants (SNRs) that can remain hot for several 10⁵-10⁶ years, contributing substantially to the volume filling hot phase, galactic outflows and the driving of turbulence in the ISM. In this talk, I am presenting the results of zoom-in simulations of SNRs embedded in a simulated isolated Milky-Way analogue, in order to investigate how environmental effects like shear, vertical stratification and a self-consistently generated ISM can affect various properties of SNRs. I find that initially microscopic SNRs, whose dynamics are dominated by local shock physics, after a few Myr enter a mesoscopic regime, where their dynamics are increasingly dominated by galactic scale processes. Based on these findings, I make predictions about SN-driven large-scale structure, such as galactic outflows and the geometry of large superbubbles in disk galaxies.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Generalized symmetry from Type IIB superstring theory
May 27 (Tue) at 16:00 - 17:00, 2025
Masashi Kawahira (Postdoctoral Fellow, Department of Physics, Graduate School of Science, Kobe University)
Recently, generalized symmetries have enabled the systematic analysis of various quantum systems. In this talk, we focus on global generalized symmetries that appear in the low-energy effective theory of type IIB superstring theory (i.e., type IIB supergravity). Specifically, we highlight the SL(2,ℤ) gauge symmetry (self-duality) in type IIB supergravity. We see that a global ℤ₁₂ eight-form symmetry arises as the quantum symmetry of the SL(2,ℤ) gauge symmetry. And we discuss its topological operator and its relation to 7-branes. This talk is based on joint work with Hiroki Wada (Tohoku University) and Naoto Kan (Osaka University).
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Non-perturbative formulation of resonant quantum mechanics within unified exact WKB framework
May 28 (Wed) at 16:00 - 17:30, 2025
Okuto Morikawa (Special Postdoctoral Researcher, Division of Fundamental Mathematical Science, RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS))
We study quasi-stationary states in quantum mechanics using the exact WKB analysis as a non-perturbative framework. We explore unstable states such as resonances by analyzing the inverted Rosen-Morse potential, which exhibits barrier resonance. This model allows exact solutions, enabling a direct comparison with exact WKB predictions. We provide a simple analytic picture of resonance and demonstrate consistency between exact and WKB-based results. A unified exact WKB framework is developed for exploring the equivalence and complementarity of different well-established regularizations \`a la Zel'dovich, complex scaling, and rigged Hilbert space within this framework.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Ecology and Evolution of Mammal-Microbe Interactions
May 29 (Thu) at 16:00 - 17:00, 2025
Taichi A Suzuki (Assitant Professor, Biodesign Center for Health Through Microbiomes, Arizona State University, USA)
A critical open question in microbiome research is identifying key host-microbial interactions that influence host fitness. While the disruption of coevolved host-microbial interactions is known to affect host fitness in simpler systems (e.g., insects and their symbionts), understanding the extent and consequences of host-microbial coevolution in more complex systems (e.g., mammals and their gut microbiota) remains a major challenge. My research has identified multiple species of gut microbes in adults and children that share a parallel evolutionary history with humans by analyzing paired human genotypes and bacterial strain genotypes. In another line of work, I applied a selection experiment demonstrating that selection and transmission of the microbiome and its metabolites can alter mouse locomotion behavior within four rounds of microbiome transfer, without any changes to the mouse genome. Finally, I will briefly outline my future plans to study the effects of disrupting evolutionary stable host-microbial associations on the phenotypes of deer mice (Peromyscus spp.) in the Madrean Sky Islands and genetically diverse human populations in Arizona. Biosketch: Assistant Professor at Arizona State University since 2023. MS at University of Arizona, PhD at University of California Berkeley, and Postdoc at Max Planck Institute for Biology. My group integrates evolutionary genomics, microbial ecology, and biomedical research to study host-microbial interactions using wild rodents and humans.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Extracting particle mass on quantum computers: state preparation and measurement
June 3 (Tue) at 11:00 - 12:30, 2025
Xiaoyang Wang (Postdoctoral Researcher, Quantum Mathematical Science Team, Division of Applied Mathematical Science, RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS))
In this seminar, I will introduce the procedure of extracting particle mass from the ab initio calculation using quantum computers, including two essential steps: state preparation and measurement. For the measurement process, in our recent work "Computing n-time correlation functions without ancilla qubits" [arXiv:2504.12975], we developed a measurement method for correlation functions without ancilla qubits, circumventing longstanding hardware constraints of limited qubit connectivity and short-range control operations. We demonstrate our method using IBM quantum hardware and successfully reproduce the noiseless results of the Schwinger model hadron mass within a relative error of 0.18%, even in the presence of realistic hardware limitations and noise. For the state preparation process, another work "Performance guarantees of light-cone variational quantum algorithms for the maximum cut problem" [arXiv:2504.12896] focused on the accuracy of the state preparation using variational quantum algorithms (VQAs). We propose a light-cone VQA with provable performance guarantees, whose single round has higher accuracy than the 3-round standard VQA for the maximum cut problem. We experimentally validated the single-round light-cone VQA using IBM quantum hardware with solution accuracy that exceeds the known classical hardness threshold in both a 72-qubit demonstration and a 148-qubit demonstration.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
A New Measure of Genuine Multipartite Entanglement
June 6 (Fri) at 14:00 - 15:00, 2025
Jaydeep Kumar Basak (Post-doctoral Fellow, Gwangju Institute of Science and Technology (GIST), Republic of Korea)
In this talk, I will introduce Latent entropy" (L-entropy) as a novel measure to characterize genuine multipartite entanglement in pure states, applicable to quantum systems with both finite and infinite degrees of freedom. This measure, derived from an upper bound on reflected entropy, attains its maximum for three-party GHZ states and n=4,5-party 2-uniform states. I will also show the generalization of this measure for higher party states. Furthermore, I will discuss an analogue of the Page curve in multiboundary wormholes. If time permits, I will show the behaviour of multipartite entanglement in random states.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Quantum Decryption from technological perspective to business opportunities
June 6 (Fri) at 16:00 - 17:30, 2025
Sho Sugiura (CEO, BlocQ, Inc.)
Quantum decryption is a foundational application of fault-tolerant quantum computing (FTQC), essential for future cryptographic security. While quantum simulations, especially quantum chemistry, dominate current quantum computing research, quantum decryption remains less explored despite its significance. In this talk, we give a business style talk that overviews the current status of quantum decryption and our company's pioneering efforts to advance practical FTQC-based solutions. We discuss recent technological advancements and outline our strategic initiatives aimed at leading the field toward secure communications.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Seminar
From Galaxies to Cosmological Structures: The Multi-Scale Influence of Cosmic Rays
June 13 (Fri) at 14:00 - 15:15, 2025
Ellis Owen (Special Postdoctoral Researcher, Astrophysical Big Bang Laboratory, RIKEN Pioneering Research Institute (PRI))
Cosmic rays interact with astrophysical systems over a broad range of scales. They go hand-in-hand with violent, energetic astrophysical environments, and are an active agent able to regulate the evolution and physical conditions of galactic and circum-galactic ecosystems. Depending on their energy, cosmic rays can also escape from their galactic environments of origin, and propagate into larger-scale cosmological structures. In this talk, I will discuss the impacts of cosmic rays retained in galaxies. I will show they can deposit energy and momentum to alter the initial conditions of star-formation, modify the circulation of baryons around galaxies, and have the potential to regulate long-term galaxy evolution. I will highlight some of the astrophysical consequences of contained hadronic and leptonic cosmic rays in and around galaxies, and how their influence can be probed using signatures including X-rays, gamma-rays and neutrinos. I will also discuss what happens to the cosmic rays that escape from galaxies, including their interactions with the magnetized large-scale structures of our Universe, and the fate of distant high-energy cosmic rays that do not reach us on Earth.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Workshop
iTHEMS-TheoryCenter(KEK) Scientific Writing and DEI Workshop
June 24 (Tue) - 25 (Wed), 2025
Ashleigh Griffin (Professor, Department of Biology, University of Oxford, UK)
Stuart West (Professor, Department of Biology, University of Oxford, UK)
Ryosuke Iritani (Senior Research Scientist, Division of Fundamental Mathematical Science, RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS))This is a two-day KEK-iTHEMS workshop on scientific writing and diversity, equity, and inclusion. For more details, please visit the workshop website via the relevant link.
Venue: 2F Large Conference Room, Administrative Headquarters, RIKEN Wako Campus
Event Official Language: English
-
Seminar
ComSHeL introductions meeting
June 24 (Tue) at 14:00 - 15:30, 2025
Following our Launch Meeting on May 1st, in this second meeting of our study group we plan for each member of the ComSHeL Study Group and anyone who joins us that day to introduce their research briefly to get to know one another's focus and expertise. If you are interested in possibly collaborating with ComSHeL members and/or you would like to get to know some of the researchers who joined us as part of iTHEMS new Division of Applied Mathematical Science, please join us. I extended the duration to 90 min (from our usual 60 min) to make sure we have enough time to hear from everyone. Each attendee will have approximately 4 minutes to explain their past, current, or upcoming research and time will be kept strictly. Time might be adjusted on the day of the meeting based on the number of applicants. If you would like to show some slides (max 3 slides), please prepare them in advance and send them to cbeau@riken.jp in PDF format no later than June 20. But no one should feel they must prepare slides: it is fine to speak freely and informally about your work.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359
Event Official Language: English
-
Seminar
Simulating the spread of infection in networks with quantum computers
June 26 (Thu) at 13:00 - 14:00, 2025
Xiaoyang Wang (Postdoctoral Researcher, Quantum Mathematical Science Team, Division of Applied Mathematical Science, RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS))
Many classical stochastic processes can be modeled as Markovian processes, including the spreading of infection in networks. Simulating the Markovian processes using classical computers is generally unscalable for large networks. In this seminar, I will introduce the Hamiltonian evolution on quantum computers and how the Markovian spreading of infection can be efficiently simulated using the Hamiltonian evolution. In particular, we analytically and numerically analyze the evolution of a specifically designed Hamiltonian, and prove that the evolution simulates a classical Markovian process, which describes the well-known epidemiological stochastic susceptible and infectious (SI) model. As an example, we simulate the infection spreading process of the SARS-CoV-2 variant Omicron in a small-world network. The simulation results are qualitative consistent with the infection spreading in the west coast of USA.
Venue: via Zoom / Seminar Room #359
Event Official Language: English
-
Seminar
Exact WKB as unified analytic structure for resonance physics
June 27 (Fri) at 15:00 - 17:00, 2025
Okuto Morikawa (Special Postdoctoral Researcher, Division of Fundamental Mathematical Science, RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS))
We develop a unified framework for analyzing quantum mechanical resonances using the exact WKB method. The non-perturbative formulation based on the exact WKB method works for incorporating well-established phenomenological regularizations, the ABC theorem (proof of the completeness of Hilbert space), and the rigged Hilbert space in resonant phenomena. By examining the inverted Rosen-Morse potential, we illustrate how the exact WKB analysis captures resonant phenomena rigorously. Also, we clarify the corresponding linear spaces defined in each step of the exact WKB manipulations. The complementarity between the essential analyticity for resonance and the ABC theorem leads us to construct a modified Hilbert space called the rigged Hilbert space within the exact WKB framework. This offers a deeper understanding of resonant states and their analytic structures. Our results provide a concrete demonstration of the non-perturbative accuracy of exact WKB methods in unstable quantum systems.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Workshop
Recent Developments and Challenges in Tensor Networks: Algorithms, Applications to science, and Rigorous theories
July 28 (Mon) - August 8 (Fri), 2025
Venue: Panasonic Hall, Yukawa Institute for Theoretical Physics, Kyoto University
Event Official Language: English
-
Colloquium
Chemical and isotopic analyses of samples returned by the Hayabusa2 mission from the asteroid Ryugu
August 1 (Fri) at 14:00 - 15:30, 2025
Tetsuya Yokoyama (Professor, Department of Earth and Planetary Sciences, School of Science, Institute of Science Tokyo)
The recent success of asteroid sample return missions has led to significant advances in Solar System science. JAXA's Hayabusa2 successfully retrieved and returned to Earth a total of 5.4 grams of samples from the C-type asteroid Ryugu. Sample return missions are critical to the scientific community, as they provide pristine, terrestrially unaltered extraterrestrial material. The analytical data obtained in laboratories for samples collected by space missions will facilitate the understanding of the formation and evolution of the Solar System. I was appointed deputy leader of the Initial Analysis Chemistry team of Hayabusa2 project, and was heavily involved in analyzing the chemical and isotopic compositions of Ryugu materials. A series of analyses of these samples indicated that the mineral, chemical, and isotopic compositions of Ryugu bear a strong resemblance to those of the Ivuna-type (CI) carbonaceous chondrites. CI chondrites have been recognized as a unique group of meteorites with a chemical composition similar to that of the solar photosphere except for highly volatile elements and Li. In the seminar, I will present the meaning and significance of the compositional similarity between Ryugu and CI chondrites. I will also present our recent activities in a new project called the Ryugu Reference Project, which was initiated to maximize the potential value of the returned samples.
Venue: 2F Large Conference Room, Administrative Headquarters, RIKEN Wako Campus (Main Venue) / via Zoom
Event Official Language: English
-
Workshop
iTHEMS-NCTS Workshop
August 18 (Mon) - 21 (Thu), 2025
This workshop aims to strengthen collaboration between researchers at RIKEN iTHEMS and the National Center for Theoretical Sciences in Taiwan. It will be a four-day event, with the first two days dedicated to interdisciplinary topics. The last two days will focus on specialized areas, with one day devoted to condensed matter physics and the other to high-energy physics, including quantum gravity.
Venue: via Zoom / RIKEN Wako Campus
Event Official Language: English
-
Conference
XIIIth International Symposium on Nuclear Symmetry Energy (NuSym25)
September 8 (Mon) - 13 (Sat), 2025
[Scientific scope] The symposium will address experimental and theoretical investigations of the equation-of-state (EoS) of nuclear matter at various isospin asymmetries. Such investigations include efforts in nuclear structure, nuclear reactions and heavy-ion collisions, as well as in astrophysical observations of compact stars and associated phenomena. An important role of the symposium is to unify efforts of the nuclear physics and astrophysics communities in addressing common research challenges.
Venue: Integrated Innovation Building (IIB)
Event Official Language: English