iTHEMS Colloquium
28 events
-
The New World of Spin Zero - Some Novel Approaches at QUP for Experimental Particle Cosmology -
May 28 (Tue) at 13:30 - 15:00, 2024
Masashi Hazumi (Director, Professor, International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK))
Particle cosmology is a discipline seeking a fundamental understanding of the Universe based on particle physics. Five mysteries drive our research today: cosmic inflation, baryon asymmetry, neutrino properties, dark matter, and dark energy. Resolving any of the five mysteries will revolutionize our picture of the Universe. Numerous interesting theoretical hypotheses have been proposed to this end. Many require new scalar quantum fields, such as inflatons, axions, supersymmetric particles, etc. They are, in a sense, an attempt to expand the role of the vacuum. Since we have not found such spin-zero fields yet, we shall invent new eyes to make an experimental or observational breakthrough. The International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP) was established in December 2021 at KEK under the WPI program of MEXT and JSPS. With its tagline of "bring new eyes to humanity," one of the primary missions of QUP is inventing and developing such new eyes for particle cosmology. In this seminar, after briefly introducing QUP, I focus on research topics I have contributed, including the LiteBIRD satellite to study inflatons and light scalar quantum field searches with novel methods using quantum sensing techniques.
Venue: Okochi Hall / via Zoom
Event Official Language: English
-
Bridging physics and society: A case study of collective memory dynamics by socio-econophysics approach
November 20 (Mon) at 15:00 - 16:30, 2023
Yukie Sano (Associate Professor, Institute of Systems and Information Engineering, University of Tsukuba)
The movements of individuals with free will are unpredictable, complex, and, needless to say, fundamentally distinct from the movements of matter. Furthermore, studying society, which forms collectives while engaging in intricate individual interactions, using mathematical models seems incredibly daunting. However, when analyzing empirical data, relatively simple mathematics often emerge in the distribution and dynamics of society at the level of collective behavior. Additionally, such mathematics often share commonalities with physical phenomena. With this background, research is progressing by applying ideas from physics to social-economic phenomena, a field known as socio-econophysics. In this presentation, I will introduce a mathematical model that addresses the decay of collective memory using access logs on the web as an example of research in socio-econophysics.
Venue: Okochi Hall / via Zoom
Event Official Language: English
-
The eyes have it: Influenza virus infection beyond the respiratory tract
July 11 (Tue) at 14:00 - 15:30, 2023
Jessica Belser (Research Microbiologist, Influenza Division, US Centers for Disease Control and Prevention (CDC), USA)
Influenza viruses are typically considered a respiratory pathogen, but are nonetheless capable of causing ocular complications in infected individuals and establishing a respiratory infection following ocular exposure. While both human and zoonotic influenza A viruses can replicate in ocular tissue and use the eye as a portal of entry, many H7 subtype viruses possess an ocular tropism in humans, though the molecular determinants that confer a non-respiratory tropism to a respiratory virus are poorly understood. In this presentation, I will discuss the establishment of several mammalian models to study ocular exposure and ocular tropism, ongoing investigations conducted in vitro and in vivo to elucidate properties associated with ocular-tropic viruses, and ways in which this information can improve efforts to identify, treat, and prevent human infection following ocular exposure to influenza viruses. Continued investigation of the capacity for respiratory viruses to gain entry to the respiratory tract and to cause ocular complications will improve understanding of how these pathogens cause human disease, regardless of the virus subtype or exposure route.
Venue: Okochi Hall / via Zoom
Event Official Language: English
-
Emergence of Extreme Universe from Quantum Information
April 17 (Mon) at 16:00 - 17:30, 2023
Tadashi Takayanagi (Professor, Yukawa Institute for Theoretical Physics, Kyoto University)
Recently, a new interpretation of gravitational spacetime in terms of quantum entanglement has been obtained. The idea of holography in string theory provides a simple geometric computation of entanglement entropy. This generalizes the well-known Bekenstein-Hawking formula of black hole entropy and strongly suggests that a gravitational spacetime consists of many qubits with quantum entanglement. Also a new progress on black hole information problem has been made recently by applying this idea. I will explain these developments in this colloquium.
Venue: via Zoom
Event Official Language: English
-
Scaling Optimal Transport for High dimensional Learning
January 24 (Tue) at 17:00 - 18:30, 2023
Gabriel Peyré (Research Director, CNRS/École Normale Supérieure, France)
iTHEMS-AIP Joint Colloquium Optimal transport (OT) has recently gained a lot of interest in machine learning. It is a natural tool to compare in a geometrically faithful way probability distributions. It finds applications in both supervised learning (using geometric loss functions) and unsupervised learning (to perform generative model fitting). OT is however plagued by the curse of dimensionality, since it might require a number of samples which grows exponentially with the dimension. In this talk, I will explain how to leverage entropic regularization methods to define computationally efficient loss functions, approximating OT with a better sample complexity. More information and references can be found on the website of our book "Computational Optimal Transport" (see related link below).
Venue: via Zoom
Event Official Language: English
-
The Epidemiology and Economics of Physical Distancing during Infectious Disease Outbreaks
December 14 (Wed) at 11:00 - 12:30, 2022
Troy Day (Professor, Head of Department, Department of Mathematics and Statistics, Queen's University, Canada)
People's incentives during an infectious disease outbreak influence their behaviour, and this behaviour can impact how the outbreak unfolds. Early on during an outbreak, people are at little personal risk of infection and hence may be unwilling to change their lifestyle to slow the spread of disease. As the number of cases grows, however, people may then voluntarily take extreme measures to limit their exposure. Political leaders also respond to the welfare and changing desires of their constituents, through public health policies that themselves shape the course of the epidemic and its ultimate health and economic repercussions. In this talk I will use ideas from the study of differential games to model how individuals’ and politicians’ incentives change during an outbreak, and the epidemiological and economic consequences that ensue when these incentives are acted upon. Motivated by the COVID-19 pandemic, I focus on physical distancing behaviour and the imposition of stay-at-home orders by politicians. I show that there is a fundamental difference in the political, economic, and health consequences of an infectious disease outbreak depending on the degree of asymptomatic transmission. If transmission occurs primarily by asymptomatic carriers, then politicians will be incentivized to impose stay-at-home orders earlier and for longer than individuals would like. Despite such orders being unpopular, however, they ultimately benefit all individuals. On the other hand, if the disease is transmitted primarily by symptomatic infections, then individuals are incentivized to stay at home earlier and for longer than politicians would like. In this case, politicians will be incentivized to impose back-to-work orders that, despite being unpopular, will again ultimately be to the benefit of all individuals. This is joint work with David McAdams, Fuqua School of Business and Economics Department, Duke University.
Venue: via Zoom
Event Official Language: English
-
From the Black Hole Conundrum to the Structure of Quantum Gravity
July 26 (Tue) at 15:30 - 17:00, 2022
Yasunori Nomura (Director, Berkeley Center for Theoretical Physics, University of California, Berkeley, USA)
Having a complete quantum theory of gravity has long been a major goal of theoretical physics. This is because a naive merger of quantum mechanics and general relativity — though it works in certain limited regimes — suffers from major theoretical problems. A particularly acute one arises when one considers the quantum mechanics of black holes: two fundamental principles of modern physics — the conservation of probability in quantum mechanics and the equivalence principle of general relativity — seem to be incompatible with each other. I will explain how recent theoretical progress begins to address this problem and portray the emerging picture of how spacetime and gravity behave at the level of full quantum gravity.
Venue: 2F Large Meeting Room, RIBF Building, RIKEN Wako Campus / via Zoom
Event Official Language: English
-
How is turbulence born: Statistical mechanics and ecological collapse in transitional fluids
April 22 (Fri) at 15:00 - 16:30, 2022
Hong-Yan Shih (Assistant Research Fellow, Institute of Physics, Academia Sinica, Taiwan)
The onset of turbulence is ubiquitous in daily life and is important in various industrial applications, yet how fluids become turbulent has remained unsolved for more than a century. Recent experiments in pipe flow finally quantified this transition, showing that non-trivial statistics and spatiotemporal complexity develop as the flow velocity is increased. Combining numerical simulations of the hydrodynamics equations and an effective theory from statistical mechanics, we discovered the surprising fact that fluid behavior at the transition is governed by the emergent predator-prey dynamics, leading to the mathematical prediction that the laminar-turbulent transition is analogous to an ecosystem on the edge of extinction. This prediction demonstrates that the laminar-turbulent transition is a non-equilibrium phase transition in the directed percolation universality class, and provides a unified picture of transition to turbulence in various systems. I will also show our recent progresses on transitional turbulence, including how an extended ecological model with energy balance successfully recapitulates the spatiotemporal patterns beyond the critical point, and the determination of the critical behavior and an emergent novel phase under interactions in the experimental collaboration.
Venue: via Zoom
Event Official Language: English
-
High-Energy Neutrino Astrophysics in the Multimessenger Era
October 28 (Thu) at 15:00 - 16:30, 2021
Kohta Murase (Associate Professor, Pennsylvania State University, USA)
The discovery of high-energy cosmic neutrinos opened a new window of astroparticle physics. Their origin is a new mystery in the field, which is tightly connected to the long-standing puzzle about the origin of cosmic rays. I will give an overview of the latest results on high-energy neutrino and cosmic-ray observations, and demonstrate the power of "multimessenger" approaches. In particular, I will show that the observed fluxes of neutrinos, gamma rays, and extragalactic cosmic rays can be understood in a unified manner. I will also highlight the recent developments about astrophysical neutrino emission from supermassive black holes and violent transient phenomena. Possibilities of utilizing high-energy neutrinos as a probe of heavy dark matter may be discussed.
Venue: via Zoom
Event Official Language: English
-
Finding Gravitational Waves from the Early Universe
September 27 (Mon) at 16:00 - 17:30, 2021
Eiichiro Komatsu (Director, Max Planck Institute for Astrophysics, Germany)
The Cosmic Microwave Background (CMB) gives a photographic image of the Universe when it was still an “infant”. We have been using it to test our ideas about the origin of the Universe. The CMB research told us a remarkable story: the structure we see in our Universe such as galaxies, stars, planets, and eventually ourselves originated from tiny quantum fluctuations in the period of the early Universe called cosmic inflation. While we have accumulated strong evidence for this picture, the extraordinary claim requires extraordinary evidence. The last prediction of inflation that is yet to be confirmed is the existence of primordial gravitational waves whose wavelength can be as big as billions of light years. To this end we have proposed to JAXA a new satellite mission called LiteBIRD, whose primary scientific goal is to find signatures of gravitational waves in the polarisation of the CMB. In this presentation we describe physics of gravitational waves from inflation, and the LiteBIRD proposal.
Venue: via Zoom
Event Official Language: English
-
Quantitative Population Dynamics in Interdisciplinary Biology
July 8 (Thu) at 10:30 - 12:00, 2021
Shingo Iwami (Professor, Graduate School of Science, Nagoya University)
Through the course of life, from the moment of birth till death, an organism will achieve various states of equilibrium or ‘homeostasis’ which will inevitably encounter perturbations. The processes of cell growth, differentiation, infection, mutation, evolution and adaptation work together as a coordinated ‘system’, described by mathematical models for population dynamics, to maintain a healthy state. Any disruptions to this system leads to disease including infection, allergy, cancer, and aging. We are conducting interdisciplinary research to elucidate “Quantitative Population Dynamics” through the course of life with original mathematical theory and computational simulation, which are both our CORE approach. Our mathematical model-based approach has quantitatively improved a current gold-standard approach essentially relying on the statistical analysis of “snapshot data” during dynamic interaction processes in life sciences research. In this talk, I will explain how our interdisciplinary approach extends our understanding for complicated clinical data and apply real world problem with an example of the Novel Coronavirus Disease, COVID-19.
Venue: via Zoom
Event Official Language: English
-
Mirror symmetry and KAM theory
April 16 (Fri) at 13:30 - 15:00, 2021
Kenji Fukaya (Permanent Member, Simons Center for Geometry and Physics, Stony Brook University, New York, USA)
13:30pm-15:00pm (JST) Mirror symmetry is a phenomenon discovered in String theory and is much discussed recently in mathematics especially in the field of complex (algebraic) geometry and symplectic geometry. Strominger-Yau-Zaslow found that this phenomenon is closed related to a Lagrangian torus fibration. In an integrable system in Hamiltonian dynamics, the phase space is foliated by Lagrangian tori. I would like to explain a program that the Lagrangian torus fibration found by Strominger-Yau-Zaslow could be regarded as one appearing certain integrable system and KAM theory (which describes a amiltonian dynamics that is a perturbation of an integrable system) could appear in the situation of Mirror symmetry.
Venue: via Zoom
Event Official Language: English
-
Geometry (形); Inconspicuous regulator that determines the fate of cells
December 14 (Mon) at 10:00 - 11:30, 2020
Sungrim Seirin-Lee (Professor, Hiroshima University)
December 14 at 10:00-11:30, 2020 (JST) December 13 at 20:00-21:30, 2020 (EST) In the history of mathematical study in pattern formation, the effect of domain has been considered as an important factor that can regulate spatial patterning. However, it is still unknown in biology how the geometry of the domain such as nuclear or cellular shapes can directly regulate the cell fate. In this talk, I will introduce two studies of spatial reorganization in chromatin and cellular dynamics and show that the domain is likely to play a critical role in determining the cell function.
Venue: via Zoom
Event Official Language: English
-
The Unreasonable Effectiveness of Quantum Theory in Mathematics
November 26 (Thu) at 10:00 - 11:30, 2020
Robbert Dijkgraaf (Director, Institute for Advanced Study in Princeton, USA)
November 26 at 10:00-11:30, 2020 (JST) November 25 at 20:00-21:30, 2020 (EST) The physical concepts of quantum theory, in particular of quantum gravity and string theory, have proven to be extremely powerful in addressing deep problems in pure mathematics, from knot invariants to algebraic geometry. Is there such a thing as “quantum mathematics”? Should we add Feynman diagrams, strings, branes and black holes to the language of mathematics?
Venue: via Zoom
Event Official Language: English
-
iTHEMS Intensive Course [4] : "Adaptive strategies of organisms, their mathematical bases" - Cancer as a mini-evolutionary process
June 25 (Thu) at 15:00 - 16:30, 2020
Yoh Iwasa (Senior Advisor, iTHEMS / Professor, Kwansei Gakuin University / Professor Emeritus, Kyushu University)
Living systems exhibit features distinct from nonliving physical systems: their structure and behaviors appear to be chosen adaptive. They are the outcomes of evolution. Mathematical formalisms developed in engineering and social sciences (e.g. control theory, game theory, evolutionary game theory) are sometimes very useful in biology.
Venue: via Zoom
Event Official Language: English
-
Emergence of life in an inflationary universe
May 11 (Mon) at 15:30 - 17:00, 2020
Tomonori Totani (Professor, Department of Astronomy, Graduate School of Science, The University of Tokyo)
The origin of life may be the greatest mystery in natural science. Especially, we know almost nothing about how the first biological molecule (possibly an RNA) appeared from abiotic chemical processes. A widespread notion is that the abiogenesis probability is extremely low when we consider only random chemical reactions to polymerize a large biological molecule. However, we do not know any more efficient polymerization process expected to work in a realistic prebiotic environment. Here, I consider this problem from a viewpoint of cosmology. Cosmologists agree that the universe created by an inflation should extend far beyond the observable universe (13.8 billion light year radius). Then the inflationary universe may be sufficiently large to produce many abiogenesis events, even if we consider only the basic random polymerization. I will give a quantitative answer to this question, and discuss various implications about the origin-of-life studies.
Venue: via Zoom
Event Official Language: English
-
Interaction Models in Quantum Optics, Representation Theory and Number Theory
April 10 (Fri) at 15:30 - 17:00, 2020
Masato Wakayama (Senior Advisor, iTHEMS / Vice President, Tokyo University of Science)
Recently, interaction models originated in quantum optics, with the quantum Rabi model (QRM) as a distinguished representative, are appearing ubiquitously in various quantum systems including cavity and circuit quantum electrodynamics, quantum dots and artificial atoms, with potential applications to quantum information technologies such as quantum computing. Together with the integrability of QRM, demonstrated by Daniel Braak in 2011, this has led to wide discussion and development of various aspect of the QRM and its generalizations from the point of view of theoretical physics and mathematics. In this talk, firstly, we characterize the structure of the spectra of QRM and its asymmetric version via sℓ2-representations. Secondly, we introduce the non-commutative harmonic oscillator, which may be considered to be a “cover” of the QRM in the Heun ODE picture, and describe certain number theoretical aspects arising from its spectral zeta function. Further, we discuss the heat kernel and partition function of the QRM toward the number theoretical investigation of the model. In addition, a number of related open problems will be presented.
Venue: via Zoom
Event Official Language: English
-
Exploring the learning principle in the brain
January 16 (Thu) at 15:30 - 17:00, 2020
Taro Toyoizumi (Team Leader, RIKEN Center for Brain Science (CBS))
Animals adapt to the environment for survival. Synaptic plasticity is considered a major mechanism underlying this process. However, the best-known form of synaptic plasticity, i.e., Hebbian plasticity that depends on pre- and post-synaptic activity, can surge coincident activity in model neurons beyond a physiological range. Our lab has explored how neural circuits learn about the environment by synaptic plasticity. The instability of Hebbian plasticity could be mitigated by a global factor that modulates its outcome. For example, TNF-alpha that mediates homeostatic synaptic scaling is released by glia, reflecting the activity level of surrounding neurons. I show that a specific interaction of Hebbian plasticity with this global factor accounts for the time course of adaptation to the altered environment (Toyoizumi et al. 2015). At a more theoretical level, I ask what is the optimal synaptic plasticity rule for achieving an efficient representation of the environment. A solution is the error-gated Hebbian rule, whose update is proportional to the product of Hebbian change and a specific global factor. I show that this rule, suitable also in neuromorphic devices, robustly extracts hidden independent sources in the environment (Isomura and Toyoizumi 2016, 2018, 2019). Finally, I introduce that synapses change by intrinsic spine dynamics, even in the absence of synaptic plasticity. I show that physiological spine-volume distribution and stable cell assemblies are both achieved when intrinsic spine dynamics are augmented in a model (Humble et al.2019).
Venue: Large Meeting Room, 2F Welfare and Conference Building (Cafeteria)
Broadcast:R311, Computational Science Research Building / SUURI-COOL (Kyoto) / SUURI-COOL (Sendai)
Event Official Language: English
-
Topological phases of matter and operator algebras
October 4 (Fri) at 15:30 - 17:00, 2019
Yasuyuki Kawahigashi (Senior Visiting Scientist, iTHEMS / Professor, Graduate School of Mathematical Sciences, The University of Tokyo)
Topological phases of matter are hot topics in recent physics and related to a wide range of mathematical fields. I will talk about their aspects related to operator algebras. Our emphasis will be on theory of tensor categories which describe interactions of anyons. This theory plays an important role in topological quantum computations. In theory of operator algebras, Jones initiated theory of subfactors and discovered the Jones polynomial, a new topological invariant for knots as an application. We apply this theory to mathematical studies of anyons.
Venue: Okochi Hall
Broadcast:R511, Computational Science Research Building / SUURI-COOL (Kyoto) / SUURI-COOL (Sendai)
Event Official Language: English
-
Spacetime Geometry of Black Holes, Wormholes, and Time Machines
July 2 (Tue) at 15:30 - 17:00, 2019
Pei-Ming Ho (Distinguished Professor, Department of Physics, National Taiwan University, Taiwan)
Since the advent of General Relativity, people have found many solutions with interesting spacetime geometries. Most notably, the black holes have attracted a lot of attention for their roles in generating gravitational waves, and for inducing the information loss paradox. In this talk, we consider black holes amongst other geometric structures and investigate the subtlety involved in the quantum effect such as Hawking radiation. In this context, we mention wormholes and time machines, and explain how they are conceptually related to the geometry under the horizon of a black hole. There will also be comments on my recent research result about how quantum effect must be large for observers sitting on top of the black hole horizon.
Venue: Large Meeting Room, 2F Welfare and Conference Building (Cafeteria)
Broadcast:R511, Computational Science Research Building / SUURI-COOL (Kyoto) / SUURI-COOL (Sendai)
Event Official Language: English
28 events
Events
Categories
series
- iTHEMS Colloquium
- MACS Colloquium
- iTHEMS Seminar
- iTHEMS Math Seminar
- DMWG Seminar
- iTHEMS Biology Seminar
- iTHEMS Theoretical Physics Seminar
- Information Theory SG Seminar
- Quantum Matter Seminar
- ABBL-iTHEMS Joint Astro Seminar
- Math-Phys Seminar
- Quantum Gravity Gatherings
- RIKEN Quantum Seminar
- Quantum Computation SG Seminar
- Asymptotics in Astrophysics SG Seminar
- DEEP-IN Seminar
- NEW WG Seminar
- Lab-Theory Standing Talks
- QFT-core Seminar
- STAMP Seminar
- QuCoIn Seminar
- Number Theory Seminar
- Berkeley-iTHEMS Seminar
- Academic-Industrial Innovation Lecture
- iTHEMS-RNC Meson Science Lab. Joint Seminar
- RIKEN Quantum Lecture
- Theory of Operator Algebras
- iTHEMS Intensive Course-Evolution of Cooperation
- Introduction to Public-Key Cryptography
- Knot Theory
- iTHES Theoretical Science Colloquium
- SUURI-COOL Seminar
- iTHES Seminar