iTHEMS Seminar
6 events

Seminar
Lattice gauge theory in curved spacetimes
December 15 (Thu) at 14:00  15:30, 2022
Dr. Arata Yamamoto (Assistant Professor, Department of Physics, Graduate School of Science, The University of Tokyo)
Lattice gauge theory is a powerful computational approach in quantum field theory. It is also utilizable for investigating quantum phenomena in curved spacetimes, such as rotating frame, torsion, and gravitational backgrounds. In this talk, I would like to overview the formulation and results of lattice simulations in curved spacetimes.
Venue: Common Room #246248 (Main Venue) / via Zoom
Event Official Language: English

Carrollian hydrodynamics near the black hole horizon
December 8 (Thu) at 16:00  17:30, 2022
Dr. Puttarak Jaiakson (Postdoctoral Researcher, iTHEMS)
The membrane paradigm provides a fascinating bridge between gravitational dynamics near black hole horizons (null boundaries) and fluid dynamics. One question naturally follows: what type of fluids and hydrodynamics emerged at the horizon? Contrary to the longstanding belief, it turns out that the horizon fluid is Carrollian, rather than the Galilean (NavierStokes) fluid. The Carroll geometries and Carrollian physics, arising originally when the speed of light goes to zero (c to 0 limit), have recently gained increasing attention in the fields of black hole physics and flat holography. In this presentation, I will talk about the Carrollian limit and the resulting Carroll geometries and this unusual kind of hydrodynamics, the Carrollian hydrodynamics. I will then present the geometrical construction of the membrane (also known as the stretched horizon) in a way that a Carroll geometry manifest, therefore allowing us to spell out precisely the dictionary between gravitational degrees of freedom on the membrane and the Carrollian fluid quantities. I will also show that the Einstein’s equations projected onto the horizon are the Carrollian hydrodynamic conservation laws. Lastly, I will discuss the covariant phase space of the horizon, symmetries, and conservation laws. The talk is based on arXiv:2209.03328 and arXiv:2211.06415.
Venue: Hybrid Format (Common Room 246248 and Zoom)
Event Official Language: English

Efficient encoding of the Schrodinger equation on quantum computers
December 5 (Mon) at 14:00  15:30, 2022
Dr. Ermal Rrapaj (Postdoctoral Researcher, iTHEMS)
The continuous space Schrödinger equation is reformulated in terms of spin Hamiltonians. For the kinetic energy operator, the critical concept facilitating the reduction in model complexity is the idea of position encoding. A binary encoding of position produces a spin1/2 Heisenberglike model and yields exponential improvement in space complexity when compared to classical computing. Encoding with a binary reflected Gray code (BRGC), and a Hamming distance 2 Gray code (H2GC) reduces the model complexity down to the XZ and transverse Ising model respectively. Any real potential is mapped to a series of klocal Ising models through the fast Walsh transform. As a first step, the encoded Hamiltonian is simulated for quantum adiabatic evolution. As a second step, the time evolution is discretized, resulting in a quantum circuit with a gate cost that is better than the Quantum Fourier transform. Finally, a simple application on an ionbased quantum computer is provided as proof of concept.
Venue: Common Room #246248 (Main Venue) / via Zoom
Event Official Language: English

Isometric tensor networks in two dimension
October 11 (Tue) at 10:30  12:00, 2022
Dr. Yantao Wu (Postdoctoral Researcher, iTHEMS)
In this talk, I would like to explain the ansatz of isometric tensor network states (isoTNS) as candidate wavefunctions in twodimensional condensed matter systems. I will explain how the isometric structure in 2D helps generalize many 1D tensor network algorithms, like the density matrix renormalization group and the timeevolution block decimation methods, to two dimensions. Both bosons and fermions; ground states and dynamics will be discussed. I will also explain why it is a friendly trial wavefunction in the context of variational Monte Carlo, where the sampling correlation time vanishes. I will also explain its relation to quantum error correction and how it provides an interesting playground of quantum information. If time permits, I would like to discuss some open questions about its representability of topological phases.
Venue: Common Room #246248 (Main Venue) / via Zoom
Event Official Language: English

Seminar
Axion electrodynamics in neutron stars
September 27 (Tue) at 14:00  15:00, 2022
Dr. Filippo Anzuini (Postdoc Fellow, Department of Astronomy, Monash University, Australia)
Axions are pseudoGoldstone bosons that provide a solution to the strong CP problem, and are prominent candidates for dark matter. In neutron stars, it has been shown recently that the potential of the QCD axion acquires finite density corrections that shift the axion field expectation value, which can be large compared to the vanishing expectation value in vacuo. Such a shift leaves an imprint on typical neutron star observables such as the redshifted thermal luminosity, which can be used to constrain the axion parameter space. In this talk we focus on the coupling of axions with photons, which modifies Maxwell’s equations and alters the neutron star magnetic field. By performing stateoftheart magnetothermal simulations, we calculate the axioninduced perturbations to the neutron star’ magnetic field, and show that they grow on relatively short timescales. At the same time, intense electric currents form, leading to enhanced ohmic dissipation, which increases the stars’ observable thermal luminosity. The activation of such mechanisms depends on the axion decay constant and the axion mass, two longsought parameters at the center of several experimental and theoretical investigations. Both parameters can be constrained by comparing our simulations to observations of thermallyemitting neutron stars. The latter do not exhibit uncontrolled growth of the magnetic field that causes enhanced ohmic dissipation, allowing us to place bounds on axion parameters. Our results open a new astrophysical avenue to constrain axions, extending significantly the parameter range that can be probed with direct axion searches.
Venue: Hybrid Format (Common Room 246248 and Zoom)
Event Official Language: English

Seminar
Stem cells determine complexity of hematopoiesis and immunity: A key in maintenance of homeostasis and fighting disease
July 11 (Mon) at 10:00  11:30, 2022
Dr. Fumihiko Ishikawa (Team Leader, Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences (IMS))
The hematopoietic system, is a complex organ in which all cells, including white blood cells (also known as leukocytes), red blood cells and platelets originate from the hematopoietic stem cells. White blood cells/leukocytes are critical effectors of immunity. At baseline, we have about 500010000/microL circulating white blood cells/leukocytes, composed of more than ten distinct subsets. Among them, the most abundant (5060%) is the neutrophil, which are capable of preventing bacterial and fungal infection. Others include T lymphocytes which attack tumors and virusinfected cells and B lymphocytes that produce immunoglobulins. Each of the leukocyte subsets have different roles in protecting us from diseases. Defects in white blood cell number or function expose us to risks of infections and tumors. Maintenance of normal homeostasis of these white blood cells is governed by expression levels of approximately 20,000 genes in hematopoietic stem cells. In this presentation, first, I will discuss current understanding of a hierarchical system of stem cells generating many different kinds of leukocytes. Second, I will talk about leukemia, a cancer of white blood cells, in which critical genes are hit by mutations, resulting in a loss or gain of function of those genes in stem cells. Third, I would like to discuss with the iTHEMS scientists potential approaches by which we can collaborate to understand the normal and diseased human blood/immune systems.
Venue: Hybrid Format (Common Room 246248 and Zoom)
Event Official Language: English
6 events