Date
November 12 (Tue) at 16:30 - 18:00, 2024 (JST)
Speaker
Language
English
Host
Ryo Namba

I will give a broad introduction to some aspects of quantum gravity and the so-called black hole information problem. I will introduce wormholes as novel contributions to the gravitational path integral and how they provide a solution to the black hole information problem. Wormholes, however, are rather mysterious and we don’t have a good microscopic understanding of them and why we should include them in the our theory. In particular, wormholes seem to imply that gravity is not a proper quantum system but rather an average over a statistical ensemble of quantum systems. I will then transition into my own work which addresses these questions in the context of holography. I will show how wormholes in 3D quantum gravity can emerge from quantum chaos in the dual 2D Conformal Field Theory, without averaging. Wormholes capture coarse-grained properties of the CFT and conversely an individual chaotic CFT can effectively behave as an averaged system. Furthermore we will be able to explicitly factorize wormholes to extract microscopic information on black hole microstates. To achieve this I will (briefly) introduce and use tools such as Random Matrix Theory, the Gutzwiller Trace formula and Berry’s diagonal approximation, and the theory of SL(2,Z) non-holomorphic modular forms.

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event