Cosection localization via shifted symplectic geometry
- Date
- December 6 (Wed) at 10:00 - 11:30, 2023 (JST)
- Speaker
-
- Young-Hoon Kiem (Professor, School of Mathematics, Korea Institute for Advanced Study (KIAS), Republic of Korea)
- Venue
- Language
- English
- Host
- Yalong Cao
Modern enumerative invariants are defined as integrals of cohomology classes against virtual fundamental classes constructed by Li-Tian and Behrend-Fantechi. When the obstruction sheaf admits a cosection, the virtual fundamental class is localized to the zero locus of the cosection. When the cosection is furthermore enhanced to a (-1)-shifted closed 1-form, the zero locus admits a (-2)-shifted symplectic structure and thus we have another virtual fundamental class by the Oh-Thomas construction. An obvious question is whether these two virtual fundamental classes coincide or not. In this talk, we will see that (-1)-shifted closed 1-forms arise naturally as an analogue of the Lagrange multiplier method. Furthermore, a proof of the equality of the two virtual fundamental classes and its applications will be discussed. Based on a joint work with Hyeonjun Park.
This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.