iTHEMS Colloquium
24 events
-
Bell's Theorem, Entanglement, Quantum Teleportation and All That
July 19 (Thu) at 16:00 - 17:30, 2018
Prof. Anthony James Leggett (Professor, University of Illinois at Urbana-Champaign, USA)
iTHEMS-CEMS Joint Colloquium. Professor Leggett is widely recognized as a world leader in the theory of low-temperature physics, and his pioneering work on superfluidity was recognized by the 2003 Nobel Prize in Physics. Abstract: One of the most surprising aspects of quantum mechanics is that under certain circumstances it does not allow individual physical systems, even when isolated, to possess properties in their own right. This feature, first clearly appreciated by John Bell in 1964, has over the last half-century been tested experimentally and found (in most people's opinion) to be spectacularly confirmed. More recently it has been realized that it permits various operations which are classically impossible, such as "teleportation" and secure-in-principle cryptography. This talk is a very basic introduction to the subject, which requires only elementary quantum mechanics.
Venue: Okochi Hall
Broadcast:#311, Computational Science Research Building / SUURI-COOL (Kyoto) / 2F Seminar Room, AIMR Main Building
Event Official Language: English
-
Systems Biology of Cellular Rhythms
July 2 (Mon) at 15:00 - 16:30, 2018
Prof. Albert Goldbeter (Professor, Unit of Theoretical Chronobiology, Faculty of Sciences, Université Libre de Bruxelles, Belgium)
Rhythmic phenomena occur at all levels of biological organization, with periods ranging from milliseconds to years. Among biological rhythms, circadian clocks, of a period close to 24h, play a key role as they allow the adaptation of living organisms to the alternation of day and night. Biological rhythms represent a phenomenon of temporal self-organization in the form of sustained oscillations of the limit cycle type. Mathematical models show how the emergent property of oscillatory behavior arises from molecular interactions in cellular regulatory networks, which explains why cellular rhythms represent a major research topic in systems biology. After providing an introduction to biological rhythms and their modeling, I will focus on mathematical models for two major examples of rhythmic behavior at the cellular level : the circadian clock and the cell cycle. The coupling of these rhythms allows for their synchronization and for the occurrence of more complex patterns of oscillatory behavior. I will discuss the reasons why models for cellular rhythms tend to become more complex, upon incorporating new experimental observations. The case of cellular rhythms allows us to compare the merits of simple versus complex models for the dynamics of biological systems.
Venue: Suzuki Umetaro Hall
Broadcast:#305-2, Computational Science Research Building / SUURI-COOL (Kyoto) / 2F Seminar Room, AIMR Main Building
Event Official Language: English
-
On the interplay between intrinsic and extrinsic instabilities of spatially localized patterns
June 7 (Thu) at 15:00 - 16:30, 2018
Prof. Yasumasa Nishiura (Professor, Advanced Institute for Materials Research (AIMR), Tohoku University)
Spatially localized dissipative structures are observed in various fields, such as neural signaling, chemical reactions, discharge patterns, granular materials, vegetated landscapes, binary convection and block copolymer nanoparticles. These patterns are much simpler than single living cells, however they seem to inherit several characteristic “living state” features, such as generation of new patterns, self-replication, switching to new dynamics via collisions and adaptive morphological changes to environments. These behaviors stem from an interplay between the intrinsic instability of each localized pattern and the strength of external signals. To understand such an interplay, we explore the global geometric interrelation amongst all relevant solution branches of a corresponding system with approximate unfolding parameters. For instance, it has been uncovered that large deformation via strong collision is mapped into the network of unstable patterns in infinite dimensional space, and that an organizing center for 1D pulse generators is a double homoclinicity of butterfly type. Large deformation of patterns is unavoidable so that a global geometric structure formed by all relevant solution branches gives us much more insight rather than conventional PDE approaches. We illustrate the impact of this approach for the case of pulse generators. We also report on the recent exciting finding, namely the formation of exotic 3D nanoparticles of block copolymers caused by the interplay between internal repulsion and affinity to external solvent, which is consistent with experimental results.
Venue: Nishina Hall
Broadcast:#305-2, Computational Science Research Building / SUURI-COOL (Kyoto)
Event Official Language: English
-
The Description of Biological Phenomena as Open System / Every Biological Variable has a Different Dynamic Range
April 23 (Mon) at 15:00 - 16:30, 2018
Dr. Kazuhiro Sakurada (Deputy Program Director, Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub (RCSTI))
Dr. Jun Seita (Unit Leader, AI based Healthcare and Medical Data Analysis Standardization Unit, RIKEN Cluster for Science, Technology and Innovation Hub (RCSTI))The Description of Biological Phenomena as Open System / Dr. Sakurada Every Biological Variable has a Different Dynamic Range / Dr. Seita
Venue: Okochi Hall
Broadcast:6F auditorium, Computational Science Research Building / SUURI-COOL (Kyoto) / SUURI-COOL (Sendai)
Event Official Language: English
24 events
Events
Categories
series
- iTHEMS Colloquium
- MACS Colloquium
- Academic-Industrial Innovation Lecture
- iTHEMS Math Seminar
- DMWG Seminar
- iTHEMS Biology Seminar
- iTHEMS Theoretical Physics Seminar
- Information Theory SG Seminar
- Quantum Matter Seminar
- Math-Phys Seminar
- NEW WG Seminar
- ABBL-iTHEMS Joint Astro Seminar
- QFT-core Seminar
- STAMP Seminar
- QuCoIn Seminar
- Number Theory Seminar
- Berkeley-iTHEMS Seminar
- iTHEMS Seminar
- iTHEMS-RNC Meson Science Lab. Joint Seminar
- iTHEMS Intensive Course-Evolution of Cooperation
- Theory of Operator Algebras
- Introduction to Public-Key Cryptography
- Knot Theory
- iTHES Theoretical Science Colloquium
- SUURI-COOL Seminar
- iTHES Seminar