セミナー
709 イベント
-
セミナー
Quantum annealing and its fundamental aspects/ Quantum annealing and its application to real world
2021年8月4日(水) 13:30 - 16:00
大関 真之 (東北大学 大学院 情報科学研究科 教授 / 東京工業大学 科学技術創成研究院 教授 / 株式会社シグマアイ 代表取締役)
Talk A (13:30~14:30) Title: Quantum annealing and its fundamental aspects Abstract: We introduce a heuristic solver for combinatorial optimization problem, quantum annealing. The quantum annealing utilizes the quantum tunneling effect to search the ground state. In particular, the Ising model with the transverse field is employed for demonstration of the quantum annealing. Most of the combinatorial optimization problem can be described by the Ising model and they are solved by quantum annealing. A decade ago, the D-Wave systems Inc. succeeded in realizing the quantum annealing in their manufactured spin system. In this talk, the concept of quantum annealing and its implementation in the D-Wave quantum annealer are introduced. Talk B (14:40~15:40) Title: Quantum annealing and its application to real world Abstract: In this talk, we review the fundamental aspects of quantum annealing and show several applications to practical combinatorial optimization problems. In particular, in Japan, many researchers in industry are interested in practical applications of quantum annealing. We, Tohoku University, are performing various collaboration with many companies in Japan. The first example is to control automated guided vehicles in collaboration with DENSO. The second one is to list hotel recommendation on a web site with Recruit lifestyle. Other ones are also exhibited as far as possible. Let us discuss a future perspective of the quantum annealing in practical applications.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Application of bioenergetics to microbial modeling
2021年7月29日(木) 10:00 - 11:00
瀬戸 繭美 (奈良女子大学 理学部 化学生物環境科学科 助教)
Bioenergetics, the study of thermodynamics as applied to biological systems, aims to understand how energy flows through a living system. Since thermodynamics provides a framework for predicting the progress of a spontaneous reaction and for harnessing the energy released, bioenergetics can help us to understand the ecological processes of chemotrophic microorganisms that harvest metabolic energy from various chemical reactions. In this talk, I will introduce a theoretical model as an attempt to describe the growth of chemotrophic microorganisms in terms of the interrelationships between microbial activities and the change in Gibbs energy of a system. Based on our findings and previous literature in the field, I will discuss ecological insights into microbial ecosystems thriving in low-energy environment.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Overview of Tensor Networks in Machine Learning
2021年7月28日(水) 13:30 - 14:50
チビン・チョウ (理化学研究所 革新知能統合研究センター (AIP) テンソル学習チーム チームリーダー)
Tensor Networks (TNs) are factorizations of high dimensional tensors into networks of many low-dimensional tensors, which have been studied in quantum physics, high-performance computing, and applied mathematics. In recent years, TNs have been increasingly investigated and applied to machine learning and signal processing, due to its significant advances in handling large-scale and high-dimensional problems, model compression in deep neural networks, and efficient computations for learning algorithms. This talk aims to present a broad overview of recent progress of TNs technology applied to machine learning from perspectives of basic principle and algorithms, novel approaches in unsupervised learning, tensor completion, multi-task, multi-model learning and various applications in DNN, CNN, RNN and etc. We also discuss the future research directions and new trend in this area.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Fallback Accretion in Binary Neutron Star Mergers
2021年7月9日(金) 16:00 - 17:30
石﨑 渉 (京都大学 基礎物理学研究所 ポスドク研究員)
The gravitational wave event GW170817 with a kilonova shows that a merger of two neutron stars ejects matter with radioactivity including r-process nucleosynthesis. A part of the ejecta inevitably falls back to the central object, possibly powering long-lasting activities of a short gamma-ray burst (sGRB), such as extended and plateau emissions. We investigate the fallback accretion with the r-process heating by performing one-dimensional hydrodynamic simulations and developing a semi-analytical model. We show that the usual fallback rate dM/dt \propto t^{-5/3} is halted by the heating. The characteristic halting timescale is $\sim 10^4$--$10^8$ sec for the GW170817-like r-process heating, which is long enough to continue the long-lasting emission of sGRBs. Furthermore, we propose a new interpretation of the recently reported re-brightening in the annual-scale X-ray light curve of GW170817. We model the fallback of the merger ejecta and construct a simple light curve model from the accreting ejecta. We find that the X-ray flux excess can be well explained by the fallback of the post-merger ejecta such as the disk wind from the accretion disk of the merger remnant rather than by the fallback of the dynamical ejecta. The duration of the constant luminosity phase conveys the initial fallback timescale t_0 in the past. Future observations in the next decades will probe the timescale of t_0 \sim 10--10^4 sec, around the time of extended emission in short gamma-ray bursts.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Non-Unitary TQFTs from 3d N=4 Rank-0 SCFTs
2021年7月5日(月) 13:00 - 14:30
Myungbo Shim (Kyung Hee University, Republic of Korea)
We propose a novel procedure of assigning a pair of non-unitary topological quantum field theories (TQFTs), TFT_\pm[T_0], to a (2+1)D interacting N=4 superconformal field theory (SCFT) T_0 of rank 0, i.e. having no Coulomb and Higgs branches. The topological theories arise from particular degenerate limits of the SCFT. Modular data of the non-unitary TQFTs are extracted from the supersymmetric partition functions in the degenerate limits. As a non-trivial dictionary, we propose that F = max{ -log |S^{(+)}_{0\alpha}| } = max{ -log |S^{(-)}_{0\alpha}| }, where F is the round three-sphere free energy of T_0 and S^{(\pm)}_{0\alpha} is the first column in the modular S-matrix of TFT_\pm. From the dictionary, we derive the lower bound on F, F > -log(\sqrt{(5-\sqrt{5})/10}) \simeq 0.642965, which holds for any rank 0 SCFT. The bound is saturated by the minimal N=4 SCFT proposed by Gang-Yamazaki, whose associated topological theories are both the Lee-Yang TQFT. We explicitly work out the (rank 0 SCFT)/(non-unitary TQFTs) correspondence for infinitely many examples. Before going to the technical part, we provide some background materials including some peculiar features in 3d gauge theories, some supersymmetries, anyons, and some modular data of MTC in this talk.
会場: via Zoom
イベント公式言語: 英語
-
An introduction to modular functions, conformal field theories, and moonshine phenomena
2021年7月2日(金) 16:00 - 18:10
及川 瑞稀 (数理創造プログラム 大学院生リサーチ・アソシエイト / 数理創造プログラム 研修生 / 東京大学 大学院数理科学研究科 博士課程)
Moonshine phenomena are certain mysterious connections between modular functions and finite groups. The first example is the celebrated monstrous moonshine, which connects the J-invariant and the Monster group. Surprisingly, this relationship can be well understood in terms of chiral conformal field theory. In this talk, I would like to explain what is chiral conformal field theory and how it gives moonshine phenomena. In the first part of the talk, the notion of modular function will be introduced and the precise statement of the monstrous moonshine will be given. Then the monstrous moonshine will be explained in terms of vertex operator algebra, a mathematical model of chiral conformal field theory. In the second part of the talk, we focus on the question: what is chiral conformal field theory mathematically? In addition to vertex operator algebras, other mathematical models of chiral conformal field theory, namely conformal nets and Segal conformal field theories, will be introduced. Recent progress on the relationship among these three models, including the Carpi--Kawahigashi--Longo--Weiner correspondence and the geometric realization of conformal nets will also be reviewed.
会場: via Zoom
イベント公式言語: 英語
-
How nucleus size affects chromatin motion? - Experimental measurements and a polymer physics theory
2021年7月1日(木) 10:00 - 11:00
坂上 貴洋 (青山学院大学 理工学部 物理・数理学科 准教授)
Chromatin moves dynamically inside the cell nucleus, and its motion is often correlated with gene functions such as DNA recombination and transcription. A recent study has shown that during early embryogenesis of the nematode, Caenorhabditis elegans, the chromatin motion markedly decreases with the cell stage. However, the underlying mechanism for this transition has yet to be elucidated. Here we systematically investigate the impact of nuclear size to demonstrate that it is indeed a decisive factor in chromatin mobility. We show that a simple theoretical description, which takes into account the length and time scales of chromatin polymer solution, can quantitatively describe the relationship between the nucleus size and the chromatin motion in vivo. Our results emphasize a regulatory role of nuclear size in restricting chromatin motion, and a generic polymer physics model plays a guiding role in capturing this essential feature. *Please refer to the email to get access to the Zoom meeting room.
会場: via Zoom
イベント公式言語: 英語
-
Toward QCD-based description of dense baryonic matter
2021年6月29日(火) 13:00 - 14:30
藤本 悠輝 (Postdoctoral Scholars, Department of Physics, University of Washington, USA)
The equation of state (EoS) of dense baryonic/quark matter is the crucial ingredient for understanding neutron stars. I briefly review the current state of the high-density matter EoS based on the QCD perspectives. In this talk, I particularly focus on the perturbative QCD (pQCD) EoS, which was previously thought to be useless at realistic density because it is plagued by the large uncertainty. I introduce our recent analysis of the EoS calculated within the pQCD framework with the resummation [Fujimoto & Fukushima, 2011.10891]. I discuss our scheme for the Hard Dense Loop resummation, which turns out to reduce the uncertainty compared with the conventional pQCD estimate without resummation. Our result apparently extends the applicability of the QCD-based EoS down to densities realized inside neutron stars and infers a smooth matching with the baryonic EoS.
会場: via Zoom
イベント公式言語: 英語
-
Theory of Core-Collapse Supernovae
2021年6月25日(金) 16:00 - 17:00
原田 了 (数理創造プログラム 基礎科学特別研究員)
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Precise WIMP Dark Matter Abundance and Standard Model Thermodynamics
2021年6月24日(木) 16:30 - 17:30
白井 智 (東京大学 カブリ数物連携宇宙研究機構 (Kavli IPMU) 特任助教)
We are now living in the era of precision cosmology. The relic abundance of dark matter (DM) is now observationally well-determined, and its error is smaller than O(1)%. This means that the same or much higher precision is required when we make theoretical predictions. Weakly Interacting Massive Particle (WIMP) has long been the leading candidate for DM because of its beautiful mechanism to predict the observed relic abundance. WIMP is in the same thermal bath as the Standard Model particles in the beginning. At a certain point when the temperature of the Universe is smaller than the DM mass, it decouples to fix its number density. The yield of the DM is determined by its annihilation cross-section to the Standard Model sector. It seems that there is no ambiguity in the calculation of this process at first: the cross-section is purely theoretical and all the remainings are described in the Standard Model physics. However, the source of the uncertainty does remain in the Standard Model sector. The dilution of the number density of DM particle depends on the expansion rate of the Universe, which is determined by the Standard Model particles. The effective degree of freedom (d.o.f) of the relativistic species controls this factor. We have to deal with the non-equilibrium dynamics to precisely describe the time-evolution of the d.o.f, in which we need numerical approaches. In this talk, he introduced his work to update these calculations. By implementing the latest findings in the non-equilibrium dynamics in i) the neutrino decoupling, ii) the QCD phase transition, iii) the electroweak phase transition, and iv) the perturbative calculations, they found that the final d.o.f is smaller than the previous estimate in more than 1%. This is larger than the level of precision in observations. It is also important that the uncertainty is quantified by them. Another good news is that he makes the calculated d.o.f with its error publically available. With these updates, we now correctly know the points to probe DM!
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Period variability can provide valuable information in oscillatory systems
2021年6月24日(木) 10:00 - 11:00
森 史 (九州大学 大学院芸術工学研究院 デザイン人間科学部門 助教)
Biological clocks generate temporally precise oscillations although they are subjected to various types of noise. In other words, oscillations with only a small variability in the period are observed under action of noise. In this talk, I focus on period variability in coupled phase oscillators and complex oscillatory dynamical systems, and present the following topics:(i) A phase oscillator subjected to noise can become to generate more precise oscillations not only when it is synchronized with periodic signal but also when it is mutually synchronized with another phase oscillator with stronger noise. (ii) In complex oscillatory dynamical systems, period variability is sensitive to the choice of an output variable and output checkpoint; it can be reduced by an appropriate selection of them. (iii) Noise intensity and coupling strength in synchronized phase oscillators can be inferred from data about period variability. This talk is based on joint researches with Dr. Hiroshi Kori (Tokyo Univ) and Dr. Alexander Mikhailov (Kanazawa Univ). *Please refer to the email to get access to the Zoom meeting room.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Introduction to the replica method
2021年6月23日(水) 13:30 - 15:40
樺島 祥介 (東京大学 大学院理学系研究科 教授)
The replica method is a mathematical technique for evaluating the "quenched" average of logarithm (or a real number power) of the partition function with respect to predetermined random variables that condition the objective system. The technique has a long history, dating back at least to a book by Hardy et al in 1930s, but has become well known only since its application to the physics of spin glasses in 1970s. More recently, its application range is spreading rapidly to various fields in information science, including information theory, communication theory, signal processing, computational complexity theory, machine learning, etc. In this talk, we introduce the basic idea of the replica method and its mathematical fault illustrating a few examples. *Detailed information about the seminar refer to the email.
会場: via Zoom
イベント公式言語: 英語
-
Black Hole Information Paradox and Wormholes
2021年6月21日(月) 13:00 - 14:30
後藤 郁夏人 (数理創造プログラム 基礎科学特別研究員)
In this talk, I will explain about the recent progress in the black hole information paradox that I am involved with. The information paradox arises when a black hole evaporates by emitting Hawking radiation due to the quantum effects. Time dependence of the entropy of Hawking radiation is diagnosis of information loss caused by the black hole evaporation. If information is not lost, the entropy of Hawking radiation should obey the so-called Page curve. In recent research developments, it was found that “the quantum extremal islands” reproduce the unitary Page curve in an evaporating black hole. I will argue about how the quantum extremal islands are derived from the computation of the entropy of Hawking radiation using the gravitational path-integral.
会場: via Zoom
イベント公式言語: 英語
-
Stable eigenvalues of compact anti-de Sitter 3-manifolds
2021年6月18日(金) 16:00 - 18:10
甘中 一輝 (数理創造プログラム 基礎科学特別研究員)
Geometric objects that have been investigated in detail so far, such as closed Riemann surfaces, are sometimes locally homogeneous. Loosely speaking, their infinitesimal behavior is the same at each point. In this talk, I would like to explain the idea of investigating such objects using the Lie group theory.In the first part of the talk, I will recall the notions of Lie group actions and their quotient spaces with examples, and then explain the definitions of locally homogeneous spaces and their deformations (Teichmüller spaces). In the second part of the talk, I will consider anti-de Sitter manifolds as a special case, i.e., Lorentzian manifolds of negative constant curvature. As in the Riemannian case, a differential operator called the Laplacian (or the Klein-Gordon operator) is defined on Lorentzian manifolds. Unlike the Riemannian case, it is no longer an elliptic differential operator but a hyperbolic differential operator. In its spectral analysis, new phenomena different from those in the Riemannian case have been discovered in recent years, following pioneering works by Toshiyuki Kobayashi and Fanny Kassel. I would like to explain stable eigenvalues of the hyperbolic Laplacian of anti-de Sitter 3-manifolds with recent progress.
会場: via Zoom
イベント公式言語: 英語
-
The origin and dispersal of buckwheat
2021年6月10日(木) 10:00 - 11:00
ジェフリ・フォーセット (数理創造プログラム 上級研究員)
Buckwheat, which soba noodles is made from, originated from a wild species that is distributed in southwest China, around Yunnan, Sichuan, and Tibet. We are trying to understand when, where, and how it originated and then spread across the world and came to Japan. To do so, we are using genomic data of wild samples from China and cultivated samples from various parts of the world. I will give a brief introduction about buckwheat, explain what we already know about its origin and dispersal, and show a bit of our results. I will also explain the significance of studying "domestication", that is, the process that plants/animals that humans currently use originated from their ancestral wild species. *Please refer to the email to get access to the Zoom meeting room.
会場: via Zoom
イベント公式言語: 英語
-
iTHEMS-phys Intro Meeting on June 7, 2021
2021年6月7日(月) 13:00 - 14:30
内藤 智也 (東京大学 大学院理学系研究科 物理学専攻 博士課程)
横田 猛 (東京大学 物性研究所 特別研究員)
辻 直美 (数理創造プログラム 特別研究員)13:00-13:20 [JST] Tomoya Naito 13:20-13:40 [JST] Takeru Yokota 13:40-14:00 [JST] Naomi Tsuji 14:00- Free discussion
会場: via Zoom
イベント公式言語: 英語
-
An overview of genome-wide epistasis and co-selection analysis
2021年6月3日(木) 10:00 - 11:00
許 インイン (数理創造プログラム 基礎科学特別研究員)
This talk is a summary of research that have done by me and my team during 2016~2019. I was a postdoc researcher in Aalto university/Helsinki university in Finland. In the team, a worldwide active collaboration has happened between many fields including statistical physics, biology, computer science and statistics. The target is to analyze ultra-high dimensional large population genomic datasets of two major human pathogens, Streptococcus pneumoniae and Neisseria meningitidis, without phenotypic data. Interacting networks of resistance, virulence and core machinery genes are identified. Many different approaches have been invented and they can be generally applied to other datasets with similar mathematical setting. I will explain methods based on statistical model [1,2], mutual information [3], and theoretical performance analysis for statistical model [4]. In the end, I will briefly introduce a new phenomenon of random matrix which is discovered during the research process for statistical significance filtering [5]. *Please refer to the email to get access to the Zoom meeting room.
会場: via Zoom
イベント公式言語: 英語
-
iTHEMS-phys Intro Meeting on June 1, 2021
2021年6月1日(火) 13:00 - 15:00
菊地 健吾 (数理創造プログラム 基礎科学特別研究員)
リナルディ エンリコ (Research Fellow, Physics Department, University of Michigan, USA)
横田 宏 (数理創造プログラム 特別研究員)13:00-13:20 [JST] Kengo Kikuchi 13:20-13:40 [JST] Enrico Rinaldi 13:40-14:00 [JST] Hiroshi Yokota 14:00- Free discussion
会場: via Zoom
イベント公式言語: 英語
-
iTHEMS-phys Intro Meeting on May 31, 2021
2021年5月31日(月) 13:00 - 15:00
難波 亮 (数理創造プログラム 上級研究員)
大下 翔誉 (数理創造プログラム 基礎科学特別研究員)
横倉 祐貴 (数理創造プログラム 上級研究員)
長瀧 重博 (数理創造プログラム 副プログラムディレクター)13:00-13:20 [JST] Ryo Namba 13:20-13:40 [JST] Naritaka Oshita (10 mins break) 13:50-14:10 [JST] Yuki Yokokura 14:10-14:30 [JST] Shigehiro Nagataki 14:30- Free discussion
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Magnetorotational Instability: Current Understanding and Perspective
2021年5月28日(金) 16:00 - 17:00
簑島 敬 (海洋研究開発機構 (JAMSTEC) 副主任研究員)
The differentially rotating flow can be destabilized in the presence of a weak magnetic field through the magnetorotational instability (MRI). The MRI is considered as a possible mechanism for outward angular momentum transport and subsequent mass accretion in accretion disks. Numerous studies have been devoted to understand its nature and judge whether it can supply the power sufficient for observed transport efficiency. For example, the MHD simulation studies have attempted to reveal the scaling of the MRI on numerical (e.g., resolution and domain size) as well as physical parameters (e.g., magnetic field intensity and configuration). In this talk, I would like to discuss current understanding and perspective of the MRI through theoretical and numerical studies. I will especially focus on the impact of transport coefficients (viscosity, resistivity, and their ratio) on the evolution of the MRI and disk.
会場: via Zoom
イベント公式言語: 英語
709 イベント
イベント
カテゴリ
シリーズ
- iTHEMSコロキウム
- MACSコロキウム
- iTHEMSセミナー
- iTHEMS数学セミナー
- Dark Matter WGセミナー
- iTHEMS生物学セミナー
- 理論物理学セミナー
- 情報理論SGセミナー
- Quantum Matterセミナー
- ABBL-iTHEMSジョイントアストロセミナー
- Math-Physセミナー
- Quantum Gravity Gatherings
- RIKEN Quantumセミナー
- Quantum Computation SGセミナー
- Asymptotics in Astrophysics SG Seminar
- GW-EOS WGセミナー
- DEEP-INセミナー
- NEW WGセミナー
- Lab-Theory Standing Talks
- 場の量子論セミナー
- STAMPセミナー
- QuCoInセミナー
- Number Theory Seminar
- 産学連携数理レクチャー
- Berkeley-iTHEMSセミナー
- iTHEMS-仁科センター中間子科学研究室ジョイントセミナー
- RIKEN Quantumレクチャー
- 作用素環論
- iTHEMS集中講義-Evolution of Cooperation
- 公開鍵暗号概論
- 結び目理論
- iTHES理論科学コロキウム
- SUURI-COOLセミナー
- iTHESセミナー