セミナー
722 イベント
-
セミナー
Stability of nonsingular black holes
2025年3月27日(木) 15:00 - 16:30
辻川 信二 (早稲田大学 理工学術院 先進理工学研究科 物理学及応用物理学専攻 辻川研究室 教授)
We show that nonsingular black holes (BHs) realized in nonlinear electrodynamics are always prone to Laplacian instability around the center because of a negative squared sound speed in the angular direction. This is the case for both electric and magnetic BHs, where the instability of one of the vector-field perturbations leads to enhancing a dynamical gravitational perturbation in the even-parity sector. Thus, the background regular metric is no longer maintained in a steady state. We also generalize our analysis to the case in which a scalar field is present besides the U(1) gauge field and find no explicit examples of linearly stable nonsingular BHs. Our results suggest that the construction of regular BHs without instabilities is generally challenging within the scheme of classical field theories.
会場: セミナー室 (359号室) (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
Genome and Sex Chromosome Analyses of Japanese Frogs Carrying Both XY and ZW Chromosomes Within the Same Species
2025年2月27日(木) 16:00 - 17:00
桂 有加子 (京都大学 京都大学ヒト行動進化研究センター 助教)
The evolution of sex chromosomes, particularly sex chromosome turnover, is a complex and fascinating topic in genetics and evolutionary biology. Sex chromosome turnover refers to the process in which the sex chromosome system changes from XY to ZW (or vice versa), or in which sex chromosomes with different evolutionary origins emerge within the same system (e.g., from one XY system to another XY system). To study sex chromosome turnover, we focus on the Japanese frog (Glandirana rugosa), which possesses both XY and ZW sex chromosomes within the same species, and investigate the molecular mechanisms behind the turnover in the frog (Review: Hayashi et al. JB 2024). Previously, we sequenced the nuclear genome of the ZZ frog (Katsura et al. LSA 2021) and identified sex-linked genes in two populations of the XY and ZW frogs (Miura et al. Mol Ecol 2022). It has been suggested that sex chromosomes originating from at least three different chromosomal lineages have independently emerged within this species. The frogs have a total of 13 chromosomes, and in two populations (Tokai/Eastern Central Japan and Hokuriku-Tohoku/North-Western Japan), chromosome 7 has morphologically differentiated into both ZW and XY chromosomes. However, in other populations, sex chromosomes do not show any morphological differentiation. In this seminar, I introduce the background of our sex chromosome study and present the results of sequence comparisons of morphologically differentiated XY and ZW chromosomes, as well as findings from our analyses of populations, genome, and transcriptome.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Ubiquity of geometric Brascamp--Lieb data
2025年2月21日(金) 15:00 - 17:00
辻 寛 (埼玉大学 大学院理工学研究科 日本学術振興会 特別研究員 PD)
This talk is based on a joint work with Neal Bez (Nagoya university) and Anthony Gauvan (Saitama university). The Brascamp--Lieb inequality is a futher general inequality involving some data (we call it the Brascamp--Lieb datum), which has been studied in harmonic analysis and convex geometry. For instance, the Hölder inequality and the Young convolution inequality are particular cases. In this talk, we have an interest in geometric Brascamp--Lieb data, which are specific data satisfying nice properties, for which the best constant of the Brascamp--Lieb inequality is well-understood. Our goal in this talk is to show that geomtric Brascamp--Lieb data are dense in general Brascamp--Lieb data in certain sence. Our result substantially follows from the work by Garg, Gurvits, Oliveira and Wigderson.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Exploring the evolutionary fate of a mutualistic community using automated microbial culture system
2025年2月20日(木) 16:00 - 17:00
砂川 純也 (北海道大学 大学院生命科学院 生命科学専攻 博士課程)
Microbes are ubiquitous around the world, forming systems where they interact through competition or cooperation. Especially in the form of cooperation, exchange of essential metabolites, known as metabolic cross-feeding, plays a fundamental role in the assembly of microbial communities. An extreme case of metabolic cross-feeding is an obligate mutualism, where one organism can only grow with the help of a partner supplying metabolites (e.g., amino acid). When they face environmental stresses such as antibiotics, it is unclear whether the benefit that causes the formation of obligate ecological mutualism may benefit (or cost) the members to increases (inhibits) resistance through interactions at the evolutionary scale. Another fascinating question is whether an additional benefit (e.g., an enzyme that helps the community persistence against environmental change) will select the community to increase the resistance. Here, I will report my ongoing research progress of obligate cross-feedings involving β-lactamase and discuss the conditions where the benefit can overcome the cost of the obligate interaction. I have started to address this issue by conducting laboratory evolution experiments with an automated culture system which can automatically adjust the strength of the stress (i.e., concentration of the antibiotics), so that the focal microbes have to get evolved. I will also share my story about building this automated culture system.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
How to define a Majorana fermion?
2025年2月20日(木) 13:00 - 14:30
藤川 和男 (東京大学 名誉教授)
It is fundamental in particle physics if the neutrino is a Dirac fermion or a Majorana fermion, and the seesaw model gives naturally a Majorana neutrino in an extension of the Standard Model. However, the commonly used chirality changing \(pseudo-C symmetry \) \(\nu^{\tilde C}_L=C\overline{\nu_L}^T\) of a chiral fermion is not defined in Lagrangian field theory. Precisely speaking, the neutrinoless double beta decay is not described by the pseudo-C symmetry. The Majorana neutrino obtained after a Bogoliubov-type canonical transformation, which is the one originally defined by Majorana using a Dirac-type fermion, describes consistently all the properties expected for the Majorana neutrino. Physical implication of this fact is briefly discussed.
会場: セミナー室 (359号室) 3階 359号室 (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
The Topology, Geometry and Physics of non-Hausdorff manifolds
2025年2月19日(水) 15:00 - 17:00
O'Connell David (沖縄科学技術大学院大学 (OIST) 博士課程)
Non-Hausdorff manifolds are manifolds containing "doubled points" that cannot be separated by disjoint open sets. In this talk we will survey some mathematical and physical results surrounding these unusual spaces. As a theme, we will start with their fundamental description as a topological space, and slowly add in more and more structure of interest until we can meaningfully phrase questions of physics. On the mathematical side, we will see descriptions of non- Hausdorff manifolds as colimits of ordinary manifolds, which allows us to describe their geometric features without appealing to arbitrarily- existent partitions of unity. On the physical side, we will consider the inclusion of non-Hausdorff manifolds in a naïve 2d Lorentzian path integral for gravity, and (time permitting) explain how construct quantum fields on a non-Hausdorff background. Ultimately, we will see that these latter two arguments suggest that non-Hausdorff manifolds may be more appropriate than the standard "Trousers space" for the modelling of topology change in Lorentzian signature.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Operator-algebraic approach to point processes
2025年2月14日(金) 15:00 - 17:00
佐藤 僚亮 (中央大学 理工学部 学振特別研究員PD)
A point process is a mathematical description of a particle system with random interactions, and it naturally appears in various areas of mathematical physics and mathematics, including statistical mechanics, random matrix theory, combinatorics, and representation theory. In particular, a random particle system with repulsive interactions is associated with a determinantal point process, in which the correlation of any number of particles is expressed in terms of the two-particle correlation via a determinant. Furthermore, this determinantal structure enables an algebraic analysis using CAR algebras, which are operator algebras determined by canonical anti-commutation relations. In the first half of the talk, we will review the relationship between determinantal point processes and operator algebras, with a focus on why operator algebras naturally lend themselves to analyses in probability theory and statistical mechanics. In the second half, based on recent work, we will examine the dynamic relationship between point processes and operator algebras, discussing how dynamics on CAR algebras give rise to stochastic processes on determinantal point processes.
会場: セミナー室 (359号室) 3階 359号室 (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
Application of genetics and genomics to breeding
2025年2月13日(木) 16:00 - 17:30
ジェフリ・フォーセット (リージョナルフィッシュ株式会社 研究開発部 主席研究員)
Humans have domesticated and modified several plants and animals over the course of history to achieve food security. However, drastic changes are required in order to meet the needs of a growing population while facing global warming. In particular, utilizing and improving the productivity of unutilized or underutilized resources such as minor crops, aquatic species, and insects are thought to be essential. Here, I will provide an overview of how humans have been modifying organisms by selective breeding, the role of genetics and genomics in modern selective breeding, and the challenges we are currently facing. This talk will be aimed at non-experts/non-biologists and will cover the basics of genetics.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Mathematical Studies on Human Cooperation
2025年2月12日(水) 15:00 - 17:00
村瀬 洋介 (理化学研究所 計算科学研究センター (R-CCS) 離散事象シミュレーション研究チーム 研究員)
Cooperation is a fundamental part of human society. But from an evolutionary perspective, it remains a puzzle—why do people help others even when it costs them? In theory, selfish individuals should have an advantage over cooperators. To explain how cooperative behaviors evolved, researchers have proposed several mechanisms, among which direct and indirect reciprocity play key roles in human interactions. In this talk, I will present my research on the evolution of cooperation, focusing on these two mechanisms. I will begin with an introduction to game theory and evolutionary game theory, which help us understand how people make decisions in strategic situations. Then, I will discuss my study on the repeated Prisoner’s Dilemma, where we discovered a new class of strategies through mathematical analysis and large-scale computations [1]. Finally, I will talk about my research on indirect reciprocity, a process where people cooperate based on reputation [2].
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Investigating the Crust Urca Process in Accretion Neutron Stars: Implications for Superburst Ignition and Hot Cooling Curve of MAXI J0556-332
2025年2月7日(金) 16:00 - 17:15
Hao Huang (Ph.D. Student, Institute of Modern Physics, China)
This seminar investigates the Urca cooling strength of the 63Fe-63Mn pair, which varies due to uncertainties in the spin-parity of 63Fe, relevant to the Island of Inversion at N = 40. We present simulations that analyze the impact of this cooling mechanism on the thermal evolution of neutron star crusts, focusing on superburst ignition and anomalous hot quiescent phase cooling of MAXI J0556-332. Additionally, we explore the potential crust Urca process through the anomalous cooling curve of MAXI J0556-332, fitting observational data to determine neutron star mass and radius preferences. Preliminary results suggest that neutron stars with a crust Urca process tend to have smaller masses and larger radii, highlighting the need for precise β-decay measurements to further understand these phenomena.
会場: 研究本館 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Fireworks in the cosmos: The Hidden Power of Nuclear Reactions
2025年2月7日(金) 14:00 - 15:15
Irin Sultana (Ph.D. Student, Department of Physics, Central Michigan University, USA)
Neutron stars in low-mass X-ray binaries, accreting hydrogen- or helium-rich material from a companion star, frequently exhibit thermonuclear runaways on their surfaces known as Type-I X-ray bursts (XRBs). These bursts are powered by nuclear processes, such as the triple-$\alpha$ process, the $\alpha p$ process, and the rapid proton capture process, which play a critical role in model-observation comparisons. In this study, we investigate the impact of nuclear reaction uncertainties on XRBs using the ONEZONE model (Cyburt et al., 2016), considering different accreted compositions and accretion rates for the binary systems that are within the range of observed burst sources. The study is carried out in two stages. First, we determine the burst ignition conditions by simulating the settling of the accreted material with a full reaction network and a semi-analytical model. Second, we perform a sensitivity analysis by varying proton- and alpha-induced reaction rates in JINA REACLIBV2.2 within their estimated uncertainties. We explore the influence of these reactions on the XRBs light curve and the final abundances. The findings highlight key nuclear reactions that significantly affect XRB observables and the final abundances produced, offering guidance for future experimental efforts to improve our understanding of the uncertainties in the reaction rates involved in XRBs.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
A coarse-grained model of disordered RNA for simulations of biomolecular condensates
2025年2月6日(木) 16:00 - 17:00
安田 一希 (慶應義塾大学 大学院理工学研究科 博士課程)
Protein-RNA condensates are involved in a range of cellular activities. Coarse-grained molecular models of intrinsically disordered proteins have been developed to shed light on and predict single-chain properties and phase separation. An RNA model compatible with such models for disordered proteins would enable the study of complex biomolecular mixtures involving RNA. Here, we present a sequence-independent coarse-grained, two-bead-per-nucleotide model of disordered, flexible RNA based on a hydropathy scale. We parameterize the model, which we term CALVADOS-RNA, using a combination of bottom-up and top-down approaches to reproduce local RNA geometry and intramolecular interactions based on atomistic simulations and in vitro experiments. The model semi-quantitatively captures several aspects of RNA-RNA and RNA-protein interactions. We examined RNA-RNA interactions by comparing calculated and experimental virial coefficients, and non-specific RNA-protein interaction by studying reentrant phase behavior of protein-RNA mixtures. We demonstrate the utility of the model by simulating the formation of mixed condensates consisting of the disordered region of MED1 and RNA chains, and the selective partitioning of disordered regions from transcription factors into these, and compare the results to experiments. Despite the simplicity of our model we show that it captures several key aspects of protein-RNA interactions and may therefore be used as a baseline model to study several aspects of the biophysics and biology of protein-RNA condensates.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Mathematics of the Future, Science of the Future: Large Language Models and Their Applications
2025年2月6日(木) 14:00 - 16:00
三内 顕義 (京都大学 大学院理学研究科 特定准教授)
In recent years, the rapid development of large language models (LLMs) such as ChatGPT has given many researchers a strong impression that these systems truly exhibit “intelligence.” In this presentation, we first review the evolution of AI research, explaining how large language models go beyond conventional machine learning by enabling more “general” forms of learning. We then highlight the importance of “sensors” and “mathematical capability” as key factors that allow AI to autonomously carry out scientific tasks such as problem analysis, hypothesis generation, and proofs in fields like mathematics and physics. We also examine how proof assistants can address the issue of hallucinations in LLM outputs, and discuss the role of combinatorial creativity in accelerating interdisciplinary research. Finally, we introduce our “AI Mathematician” agent project, demonstrating how integrating large language models with proof assistants can open new horizons in mathematical sciences.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Master equations for general non-Markovian processes: the Hawkes process and beyond
2025年2月5日(水) 16:30 - 18:00
金澤 輝代士 (京都大学 大学院理学研究科 物理学・宇宙物理学専攻 准教授)
The Markovian process is one of the most important classes of stochastic processes. The Markovian process is defined as a stochastic process whose time evolution is independent of the system's entire history and has been extensively studied using the master equation and Fokker-Planck equation approaches. In contrast, non-Markovian processes -- where time evolution depends on the full history of the system -- have not been systematically explored, except for a few special cases, such as semi-Markovian processes. In this talk, we present a recent master-equation approach to general non-Markovian jump processes [1-4]. Beginning with a general non-Markovian jump process, we derive the corresponding master equation through a Markovian-embedding approach. The Markovian embedding is a scheme to add a sufficient number of auxiliary variables to convert a non-Markovian model to a high-dimensional Markovian model. For the case of our model, the one-dimensional non-Markovian model is shown to be equivalent to a Markovian stochastic field theory, and we derive the field master equation correspondingly [4]. As an application, we examine the nonlinear Hawkes process, a history-dependent and self-exciting model frequently used in studying complex systems [1-3]. Additionally, we explore the stochastic thermodynamic framework for general jump processes [5] as another example.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Introduction to the stochastic process and its application in physics
2025年2月4日(火) - 5日(水)
金澤 輝代士 (京都大学 大学院理学研究科 物理学・宇宙物理学専攻 准教授)
The stochastic process is a popular tool for broad disciplines, such as physics, biophysics, chemistry, neuroscience, economics, and finance. In this lecture course, I will provide an elementary introduction to stochastic processes in physics without assuming rigorous background knowledge of probability theories. Most of the basic topics in stochastic processes will be covered in this lecture course, such as (1) the one-to-one correspondence between stochastic differential equations and master equations, (2) their standard forms, (3) Ito's lemma, and (4) the perturbation theories (the system-size expansion). I will also present its application to statistical physics, such as (5) kinetic theory and (6) a microscopic derivation of the Langevin equation from hard-sphere Hamiltonian dynamics in the dilute gas limit. My goal is to help the audience calculate most of the main calculations by their own hands by providing detailed explanations without abbreviations. This lecture is based on my Japanese notebook, available on my webpage (see the link below). Schedule: (Tue., Feb. 4) 13:00-14:30, 14:45-16:15, 16:30-18:00 (Wed., Feb. 5) 10:30-12:00, 13:00-14:30, 14:45-16:15
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Can AI understand Hamiltonian mechanics?
2025年1月31日(金) 16:00 - 17:00
Tae-Geun Kim (Ph.D. Student, Department of Physics, Yonsei University, Republic of Korea)
With recent breakthroughs in deep learning, particularly in areas like natural language processing and image recognition, AI has shown remarkable abilities in understanding complex patterns. This raises a fundamental question: Can AI grasp the core concepts of physics that govern the natural world? In this talk, as a first step towards addressing this question, we will discuss the possibility of AI understanding Hamiltonian mechanics. We will first introduce the concept of operator learning, a novel technique that allows AI to learn mappings between infinite-dimensional spaces, and its application to Hamiltonian mechanics by reformulating it within this framework. Then, we will test whether AI can derive trajectories in phase space given an arbitrary potential function, without relying on any equations or numerical solvers. We will then showcase our findings, demonstrating AI's capability to predict phase space trajectories under certain constraints. Finally, we will discuss the limitations, future research directions, and the potential for AI to contribute to scientific discovery.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
D-modules and the Riemann-Hilbert correspondence as a foundation for mixed Hodge modules
2025年1月31日(金) 14:00 - 16:00
齋藤 隆大 (中央大学 理工学部 助教)
Algebraic analysis is a field which began with the study of differential equations in an algebraic framework, known as D-modules. The Riemann-Hilbert correspondence lies at the heart of this field, which bridges the worlds of analysis and geometry. Thanks to this, some geometric problems can be studied by using D-module theory, and vice versa. Based on D-module theory, Morihiko Saito introduced the concept of mixed Hodge modules, realizing Hodge theory on constructible sheaves, which brings us a functorial treatment of Hodge theory and various applications. In this talk, we will begin with the linear differential equations on the complex plane and introduce monodromy, regularity and Deligne's Riemann-Hilbert correspondence. Then, as a generalization of it, I will explain the basics of the theory of D-modules and the Riemann-Hilbert correspondence. Finally, I will describe the role they play in the theory of Hodge modules and recent progress in this area. For the audience's background knowledge, I will assume basic complex function theory. I will start with a simple example, so people outside the field are welcome.
会場: セミナー室 (359号室) (メイン会場) / via Zoom
イベント公式言語: 英語
-
Effective size and dimension, in biology and beyond
2025年1月30日(木) 16:00 - 17:00
入谷 亮介 (数理創造プログラム 上級研究員)
This talk will be a very short, introductory talk on some fundamental concepts of “effective size” from population-biological, statistical, and mathematical viewpoints.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Reheating after a cosmological constant relaxation and gravitational waves lensed by a supermassive black hole
2025年1月30日(木) 14:00 - 15:30
Paul Martens (Postdoctoral Fellow, Department of Physics, The Chinese University of Hong Kong, China)
This presentation will be articulated in two parts. In a first part, I will present the a reheating mechanism that follows a dynamically relaxed cosmological constant. The latter is achieved by the dynamics of a scalar field whose kinetic term is modulated by an inverse power of spacetime curvature. While it is at work against radiative corrections to the dark energy, this process alone would wipe out not only the vacuum energy, but also all other matter contents. A reheating phase is thus introduced, which exploits a null-energy-condition violating sector. In a second part, I shall present a more recent and still ongoing project to describe and characterize the lensing of gravitational waves by an active galactic nuclei (or any supermassive black hole), in the geometric limit. Such systems are simple enough for constraints to be derived with only few assumptions. Yet, they present interesting features that could provide information on e.g. on binary black hole formation mechanisms and quasinormal modes.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
Quantum Error Mitigation
2025年1月28日(火) - 29日(水)
遠藤 傑 (NTTコンピュータ&データサイエンス研究所 理論量子情報研究センタ 准特別研究員)
Note for registration [2024-12:24]: We are sorry that the number of registration has reached the capacity of the lecture room. Thank you for your understanding. Note for participants [2024-12:18]: For participants, please register from the above form. We may limit the number of participants due to the capacity of the lecture room. For participants in RIKEN who have already answered a questionnaire on this lecture, you do not have to register. Program: Day 1 (Jan. 28th) 10:30-12:00 Lecture 1 12:00-13:30 Lunch time 13:30-15:00 Lecture 2 15:00-15:30 Coffee break 15:30-17:00 Lecture 3 Day 2 (Jan. 29th) 10:30-12:00 Lecture 4 12:00-13:30 Lunch time 13:30-15:00 Lecture 5 15:00-15:30 Coffee break 15:30-17:00 Lecture 6 Abstract: Quantum Error Mitigation (QEM) offers a practical approach to reducing errors in noisy intermediate-scale quantum (NISQ) devices without requiring the encoding of qubits. In this seminar, I will begin by discussing the fundamentals of noise modeling in quantum systems, followed by an overview of QEM techniques, including extrapolation, probabilistic error cancellation (PEC), virtual distillation, quantum subspace expansion, and Clifford data regression. Next, I will present advanced QEM methods, such as the stochastic PEC approach, which mitigates the effects of Lindblad terms in Lindblad master equations and the generalized quantum subspace expansion, which is a unified framework of QEM. I will also explore recent research on the information-theoretic analysis of QEM, shedding light on its fundamental limits and connections to non-Markovian dynamics. Furthermore, I will discuss studies combining QEM with quantum error correction to enhance the reliability of computations in the early fault-tolerant quantum computing era. Lastly, I will highlight the relevance of hybrid tensor networks, particularly their connections to quantum subspace expansion techniques.
会場: 研究本館 4階 435-437号室
イベント公式言語: 英語
722 イベント
イベント
カテゴリ
シリーズ
- iTHEMSコロキウム
- MACSコロキウム
- iTHEMSセミナー
- iTHEMS数学セミナー
- Dark Matter WGセミナー
- iTHEMS生物学セミナー
- 理論物理学セミナー
- 情報理論SGセミナー
- Quantum Matterセミナー
- ABBL-iTHEMSジョイントアストロセミナー
- Math-Physセミナー
- Quantum Gravity Gatherings
- RIKEN Quantumセミナー
- Quantum Computation SGセミナー
- Asymptotics in Astrophysics SG Seminar
- GW-EOS WGセミナー
- DEEP-INセミナー
- NEW WGセミナー
- Lab-Theory Standing Talks
- 場の量子論セミナー
- STAMPセミナー
- QuCoInセミナー
- Number Theory Seminar
- 産学連携数理レクチャー
- Berkeley-iTHEMSセミナー
- iTHEMS-仁科センター中間子科学研究室ジョイントセミナー
- RIKEN Quantumレクチャー
- 作用素環論
- iTHEMS集中講義-Evolution of Cooperation
- 公開鍵暗号概論
- 結び目理論
- iTHES理論科学コロキウム
- SUURI-COOLセミナー
- iTHESセミナー