Can we infer probability distributions from cumulants? Probabilistic approaches to inverse problems
- 日時
- 2025年3月18日(火)15:30 - 16:30 (JST)
- 講演者
-
- Yang-Yang Tan (Ph.D. Candidate, Dalian University of Technology, China)
- 会場
- via Zoom
- 言語
- 英語
- ホスト
- Lingxiao Wang
Inverse problems, which involve estimating system inputs from outputs, are prevalent across science and engineering. Their ill-posed nature often makes finding numerically stable and unique solutions challenging. This seminar explores probabilistic methods for reconstructing distributions from a finite set of their moments or cumulants. We apply the Maximum Entropy Method (MEM) and Gaussian Process (GP) to reconstruct net-baryon number distributions across the QCD chiral crossover region using cumulant data from the STAR experiment and functional renormalization group (fRG) calculations. Our results demonstrate how higher-order cumulants shape distribution tails, while anomalous features in the reconstructed distributions provide constraints on the input cumulants. We also discuss deep learning approaches for distribution reconstruction from cumulants and present our recent work on physics-informed neural networks (PINNs) for solving fRG equations.
Reference
- Chuang Huang, Yang-yang Tan, Rui Wen, Shi Yin and Wei-jie Fu, Reconstruction of baryon number distributions, Chin. Phys. C. 47 (2023) 10, 104106, doi: 10.1088/1674-1137/aceee1, arXiv: 2303.10869
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。