Solving Inverse Problems with Physics-Driven Deep Learning
- 日時
- 2025年6月4日(水)15:00 - 16:00 (JST)
- 講演者
-
- 王 凌霄 (理化学研究所 数理創造研究センター (iTHEMS) 数理基礎部門 研究員)
- 会場
- セミナー室 (359号室) (メイン会場)
- via Zoom
- 言語
- 英語
- ホスト
- Lingxiao Wang
This talk kicks off a four-part seminar series on the DEEP-IN WG, an interdisciplinary working group exploring how modern deep learning — including deep generative models — can tackle inverse problems across scientific domains. In addition to DEEP-IN activities, I will present a new framework and vision, motivated by the growing synergy between physics-driven designs for deep learning and scientific discovery, as discussed in our recent review article. Future talks will demonstrate machine learning applications in collective behaviors, weather systems, and lattice field simulations.
This is an informal seminar, we will start with the methodology, give some practical examples, and finally reserve time for everyone interested to discuss it together.
Reference
- G. Aarts, K. Fukushima, T. Hatsuda, A. Ipp, S. Shi, L. Wang, and K. Zhou, Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics, Nat. Rev. Phys. Vol. 7, 154 (2025), doi: 10.1038/s42254-024-00798-x
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。