日時
2025年11月26日(水)15:00 - 16:00 (JST)
講演者
  • 李 可仁 (Assistant Professor, College of Physics and Optoelectronic Engineering, Shenzhen University, China)
会場
  • via Zoom
言語
英語
ホスト
Lingxiao Wang

Accurate prediction of quantum Hamiltonian dynamics and identification of Hamiltonian parameters are crucial for advancements in quantum simulations, error correction, and control protocols. This talk introduces a machine learning model with dual capabilities: it can deduce time-dependent Hamiltonian parameters from observed changes in local observables within quantum many-body systems, and it can predict the evolution of these observables based on Hamiltonian parameters. The model’s validity was confirmed through theoretical simulations across various scenarios and further validated by two experiments. Initially, the model was applied to a Nuclear Magnetic Resonance quantum computer, where it accurately predicted the dynamics of local observables. The model was then tested on a superconducting quantum computer with initially unknown Hamiltonian parameters, successfully inferring them. We believe that machine learning techniques hold great promise for enhancing a wide range of quantum computing tasks, including parameter estimation, noise characterization, feedback control, and quantum control optimization.

References

  1. Zheng An, Jiahui Wu, Zidong Lin, Xiaobo Yang, Keren Li, and Bei Zeng, Dual-Capability Machine Learning Models for Quantum Hamiltonian Parameter Estimation and Dynamics Prediction, Physical Review Letters 134, no. 12, 120202. (2025), doi: 10.1103/PhysRevLett.134.120202, arXiv: 2405.13582
  2. Keren Li, Floquet-informed Learning of Periodically Driven Hamiltonians, arXiv: 2509.02331

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる