日時
2025年6月25日(水)15:00 - 16:00 (JST)
講演者
  • 王 凌霄 (理化学研究所 数理創造研究センター (iTHEMS) 数理基礎部門 研究員)
言語
英語
ホスト
Lingxiao Wang

In the final talk of the DEEP-IN series, we will explore the role of generative models in learning phase transitions and sampling in lattice systems. First, we demonstrate how generative models can serve as global samplers by learning the underlying probability distributions. This enables the sampling of configurations more efficiently for lattice field theories. We will also demonstrate how the ferromagnetic phase transition, the Kosterlitz-Thouless transition, and quantum phase transitions can be identified from generative models. I will briefly introduce generative diffusion models, which can be interpreted as a stochastic quantization scheme. This opens a new path for understanding deep generative models.

This is an informal seminar, we will start with the methodology and some practical examples, and finally reserve time for everyone interested to discuss it together.

References

  1. Q. Zhu, G. Aarts, W. Wang, K. Zhou, and L. Wang, Physics-Conditioned Diffusion Models for Lattice Gauge Theory, (2025), arXiv: 2502.05504
  2. L. Wang, G. Aarts, and K. Zhou, Diffusion models as stochastic quantization in lattice field theory, JHEP 05, 060 (2024), doi: 10.1007/JHEP05(2024)060
  3. T. Xu, L. Wang, L. He, K. Zhou, and Y. Jiang, Building imaginary-time thermal filed theory with artificial neural networks, Chin. Phys. C 48, 103101 (2024), doi: 10.1088/1674-1137/ad5f80
  4. S. Chen, O. Savchuk, S. Zheng, B. Chen, H. Stoecker, L. Wang, and K. Zhou, Fourier-flow model generating Feynman paths, Phys. Rev. D 107, 056001 (2023), doi: 10.1103/PhysRevD.107.056001
  5. L. Wang, Y. Jiang, L. He, and K. Zhou, Continuous-mixture autoregressive networks learning the Kosterlitz-Thouless transition, Chin. Phys. Lett. 39, 120502 (2022), doi: 10.1088/0256-307X/39/12/120502

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる

関連リンク