Collective Behaviors and Deep Learning Applications
- 日時
- 2025年6月11日(水)15:00 - 16:00 (JST)
- 講演者
-
- 王 凌霄 (理化学研究所 数理創造研究センター (iTHEMS) 数理基礎部門 研究員)
- 会場
- セミナー室 (359号室) (メイン会場)
- via Zoom
- 言語
- 英語
- ホスト
- Lingxiao Wang
Understanding and modeling collective pedestrian behavior, particularly under extreme conditions, is a challenging problem that combines cognition, physics, and data analysis. In the second talk of DEEP-IN series, I will explore how deep learning can reveal the underlying principles of crowd dynamics from data. Starting with a bounded rationality framework, we demonstrate how deep learning can quantify evacuation dynamics and reveal hidden patterns in collective motion. Specifically, we demonstrate how macroscopic observables, such as entropy and kinetic energy, can be extracted from microscopic trajectories in simulations and real-world data.
This is an informal seminar, we will start with the methodology and some practical examples, and finally reserve time for everyone interested to discuss it together.
References
- S. Zhou, R. Shi, and L. Wang, Extracting macroscopic quantities in crowd behaviour with deep learning, Phys. Scr. 99, 065213 (2024), doi: 10.1088/1402-4896/ad423e
- H. Hou and L. Wang, Measuring Dynamics in Evacuation Behaviour with Deep Learning, Entropy 24, 198 (2022), doi: 10.3390/e24020198
- L. Wang and Y. Jiang, Escape dynamics based on bounded rationality, Physica A 531, 121777 (2019), doi: 10.1016/j.physa.2019.121777
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。