日時
2025年9月18日(木)14:00 - 15:00 (JST)
講演者
  • ドロシー・エリス (理化学研究所 生命医科学研究センター (IMS) 統合ゲノミクス研究チーム 特別研究員)
会場
  • via Zoom
言語
英語
ホスト
Catherine Beauchemin

We are actively developing multi-omics winnowing in R (mowR), a non-negative matrix factorization (NMF)-based model that expands upon the functionality of joint graph-regularized single cell sparse non-negative matrix factorization (jrSiCKLSNMF) from Ellis et al. (2023). “Omics” data characterize the molecular components of a biological sample. Examples of omics modalities include transcriptomics (RNA), epigenomics (epigenetic modifications), metabolomics (metabolites), proteomics (proteins), and genomics (DNA). Multi-omics analysis involves the integration of two or more of these modalities, and omics data are often high-dimensional and sparse. Therefore, dimension reduction techniques are often required to extract interpretable information from these datasets.

NMF, one such dimension reduction technique, finds a low-dimensional approximation of M omics features by N observations data matrix X via the product of an M × D loadings matrix W and D × N activations matrix H, where the number of latent factors D << min(M, N ). The jrSiCKLSNMF model extends the basic NMF model by fitting a shared H across v ∈ {1, ..., V } omics count modalities. It also incorporates ridge regularization on H, graph regularization on feature matrix Wv in modality v, and sum-to-one L2 norm constraints on the rows of H. We extend jrSiCKLSNMF to mowR by implementing mini-batch updates (Serizel et al., 2016), modality-specific loss functions (e.g. Poisson K-L divergence for count modalities and Frobenius norm for Gaussian modalities), modality-specific activation matrices Hv and weights ωv on H to allow constraints on Wv , loss weights, LASSO regularization on H, and L2 norm constraints on Wv .

We also introduce a novel technique to tune hyperparameters for unsupervised data by combining the data thinning/count splitting techniques outlined in Neufeld et al. (2023, 2024) with Bayesian optimization as implemented in the R package ParBayesianOptimization from Wilson (2018). In this talk, we focus on mowR’s hyperparameter tuning strategy, highlighting its current limitations and strategies to overcome them.

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる