Statistical Physics of In-Context Learning in Transformer
- 日時
- 2025年9月16日(火)15:00 - 16:30 (JST)
- 講演者
-
- Haiping Huang (Professor, School of Physics, Sun Yat-sen University, China)
- 会場
- via Zoom
- 言語
- 英語
- ホスト
- Lingxiao Wang
The pre-trained large model demonstrates the ability to learn from examples, that is, it can infer patterns and generalize from a small number of examples without retraining. How does this ability emerge? This report proposes a physical model mapping of the large model pre-training process, and finds that the training process corresponds to spin condensation, the unique energy ground state will determine the example generalization ability, and the diversity of training data is a key element in algorithm design. This study also reveals that the reasoning process of the large model may be fundamentally different from human thinking.
References
- Yuhao Li, Ruoran Bai, Haiping Huang, Spin glass model of in-context learning, Phys. Rev. E 112, L013301 (2025), doi: 10.1103/5l5m-4nk5, arXiv: 2408.02288
- Haiping Huang, Statistical Mechanics of Neural Networks, (2022), doi: 10.1007/978-981-16-7570-6
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。