日時
2025年9月16日(火)15:00 - 16:30 (JST)
講演者
  • Haiping Huang (Professor, School of Physics, Sun Yat-sen University, China)
会場
  • via Zoom
言語
英語
ホスト
Lingxiao Wang

The pre-trained large model demonstrates the ability to learn from examples, that is, it can infer patterns and generalize from a small number of examples without retraining. How does this ability emerge? This report proposes a physical model mapping of the large model pre-training process, and finds that the training process corresponds to spin condensation, the unique energy ground state will determine the example generalization ability, and the diversity of training data is a key element in algorithm design. This study also reveals that the reasoning process of the large model may be fundamentally different from human thinking.

References

  1. Yuhao Li, Ruoran Bai, Haiping Huang, Spin glass model of in-context learning, Phys. Rev. E 112, L013301 (2025), doi: 10.1103/5l5m-4nk5, arXiv: 2408.02288
  2. Haiping Huang, Statistical Mechanics of Neural Networks, (2022), doi: 10.1007/978-981-16-7570-6

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる