On ℓ_p-Vietoris-Rips complexes and blurred magnitude homology
- 日時
- 2025年10月7日(火)11:00 - 13:00 (JST)
- 講演者
-
- Sergei O. Ivanov (Professor, Beijing Institute of Mathematical Sciences and Applications, China)
- 会場
- 研究本館 3階 セミナー室(345-347) (メイン会場)
- via Zoom
- 言語
- 英語
- ホスト
- Vladimir Sosnilo
One of the main tools in topological data analysis is the notion of a persistence module. The most prominent example is the persistence module associated with the Vietoris–Rips complex of a finite metric space. On the other hand, the concept of magnitude has become increasingly well known in data analysis. Recently, Nina Otter introduced blurred magnitude homology, which is also a persistence module associated with a metric space. Govc and Hepworth showed that the magnitude of a finite metric space can be uniquely recovered from its blurred magnitude homology. For 1 ≤ p ≤ ∞, we define the ℓ_p-Vietoris–Rips complexes and the associated ℓ_p-persistent homology of metric spaces, and we study their fundamental properties. We show that for p=∞ this theory recovers the classical theory of Vietoris–Rips complexes and their persistent homology, while for p=1 it recovers the theory of blurred magnitude homology.
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。外部の方を含む研究者の方はどなたでもご参加頂けますので、参加登録フォームからご登録ください。