日時
2025年10月22日(水)15:00 - 16:30 (JST)
講演者
  • Tom Spriggs (PostDoc, Kavli Institute of Nanoscience and QuTech, Delft University of Technology, Netherlands)
会場
  • via Zoom
言語
英語
ホスト
Lingxiao Wang

In this talk I will cover our recent preprint arXiv:2509.12323 where we propose a neural network approach to finding the ground state wavefunction of SU(2) lattice gauge theory. Specifically, we demonstrate that the use of bespoke SU(2)-gauge-equivariant neural network layers increases the extent to which our variational ansatz can represent the ground state of this system. During this talk I will contrast the Hamiltonian and Euclidean formalisms of lattice gauge theories, highlighting the promises that the former offers but also the difficulties: noting briefly the issues of parameterising the continuous Hilbert space that plague tensor network and quantum simulation approaches and how our approach alleviates this. I will try and present our method pedagogically as we are very interested in learning its uses but also the limits of its validity, before closing with some remarks on scaling to larger systems and different gauge groups.

Reference

  1. Thomas Spriggs, Eliska Greplova, Juan Carrasquilla, Jannes Nys, Accurate ground states of SU(2) lattice gauge theory in 2+1D and 3+1D, arXiv: 2509.12323

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる