LeanConjecturer: Automatic Generation of Mathematical Conjectures for Theorem Proving
- 日時
- 2025年8月1日(金)16:00 - 18:00 (JST)
- 講演者
-
- 恩田 直登 (Project Research Engineer, Research Administrative Division, Omron Sinic X Corporation)
- 会場
- via Zoom
- セミナー室 (359号室) 3階 359号室
- 言語
- 英語
- ホスト
- Taketo Sano
We introduce LeanConjecturer, a pipeline for automatically generating university-level mathematical conjectures in Lean 4 using Large Language Models (LLMs). Our hybrid approach combines rule-based context extraction with LLM-based theorem statement generation, addressing the data scarcity challenge in formal theorem proving. Through iterative generation and evaluation, LeanConjecturer produced 12,289 conjectures from 40 Mathlib seed files, with 3,776 identified as syntactically valid and non-trivial, that is, cannot be proven by aesop tactic. We demonstrate the utility of these generated conjectures for reinforcement learning through Group Relative Policy Optimization (GRPO), showing that targeted training on domain-specific conjectures can enhance theorem proving capabilities. Our approach generates 103.25 novel conjectures per seed file on average, providing a scalable solution for creating training data for theorem proving systems. Our system successfully verified several non-trivial theorems in topology, including properties of semi-open, alpha-open, and pre-open sets, demonstrating its potential for mathematical discovery beyond simple variations of existing results.
Reference
- Naoto Onda, Kazumi Kasaura, Yuta Oriike, Masaya Taniguchi, Akiyoshi Sannai, Sho Sonoda, LeanConjecturer: Automatic Generation of Mathematical Conjectures for Theorem Proving, arXiv: 2506.22005
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。外部の方を含む研究者の方はどなたでもご参加頂けますので、参加登録フォームからご登録ください。