Full exceptional collections on Fano threefolds and the braid group action
- 日時
- 2025年12月5日(金)16:00 - 17:30 (JST)
- 講演者
-
- Anya Nordskova (カブリ数物連携宇宙研究機構 (Kavli IPMU) Postdoctoral researcher)
- 会場
- 研究本館 3階 セミナー室(345-347) (メイン会場)
- via Zoom
- 言語
- 英語
- ホスト
- Vladimir Sosnilo
The bounded derived category D^b(X) of coherent sheaves on an algebraic variety X is a powerful tool that encodes a wealth of information about X. In some cases D^b(X) admits a particularly nice description via so-called full exceptional collections, which allow one to view D^b(X) as being glued from the simplest building blocks, each equivalent to the derived category D^b(pt) of a point. In this situation the set of all full exceptional collections admits an action of the braid group.
In 1993, Bondal and Polishchuk conjectured that this braid group action is always transitive. After a short historical overview I will sketch the idea behind the proof of Bondal-Polishchuk's conjecture in the case when X is a Fano threefold of Picard rank 1 (e.g. the projective space P^3). This is the first 3-dimensional case where the transitivity of the braid group action has been verified.
The talk is based on joint work with Michel Van den Bergh.
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。