From Wavefunction Sparsity to Quantum Filter-Assisted Subspace Diagonalization
- 日時
- 2026年2月4日(水)13:00 - 14:30 (JST) 明日開催
- 講演者
-
- Han Xu (理化学研究所 計算科学研究センター (R-CCS) 量子系物質科学研究チーム 特別研究員)
- 会場
- via Zoom
- セミナー室 (359号室)
- 言語
- 英語
- ホスト
- Xiaoyang Wang
Subspace diagonalization techniques based on quantum sampling, such as quantum selected configuration interaction (QSCI) and sample-based quantum diagonalization (SQD), are a class of quantum-centric algorithms for approximating ground-state energies of many-body systems. One of the foundational bottlenecks for SQD is due to the lack of compactness of the ground-state wavefunctions. In this talk, we will introduce a filter-assisted SQD protocol that enhances the wavefunction sparsity through a quantum-circuit transformation of the Hamiltonian. Using the Gini coefficient as a robust sparsity measure, we clarify how sparsity determines the resource requirements of SQD. To construct the quantum filter, we develop a tensor-network-based automatic circuit-encoding algorithm that encodes the target matrix product states with controllable fidelity. We benchmark the method on the quantum Ising model under the transverse and longitudinal fields, using both numerical simulations and experiments on IBM quantum hardware. Our results show that the filter-assisted protocol reduces energy-estimation errors by orders of magnitude and substantially lowers the overhead of measurement compared with standard SQD, which highlight the potential of filter-assisted protocol in quantum-centric computing for strongly correlated materials.
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。