Ensemble transform Kalman filter (ETKF) extensions for near-bound variables: Results from simple aerosol data assimilation experiments
- 日時
- 2025年9月16日(火)9:00 - 10:30 (JST)
- 講演者
-
- Jiang Richard Liang (慶応義塾大学 博士研究員)
- 会場
- Hybrid Format (RIKEN R-CCS room 107 and Zoom)
- 言語
- 英語
- ホスト
- Shungo Tonoyama
Traditional data assimilation (DA) methods approximate the error distributions using Gaussian probability density functions (PDFs). However, the error distributions of some variables, such as clouds, precipitation, and aerosols, could be better approximated by gamma and inverse-gamma PDFs. For such bounded variables, the error standard deviation will likely increase with the distance of the unknown true value from its bound. To properly include these error distributions, a previous study by C. Bishop invented a method called the GIG filter, which is based on gamma and inverse-gamma distributions. We compared the performance of this new method and the traditional DA method with cycled DA experiments using a new tracer model based on the Lorenz-96 model. The GIG filter's performance is better for assimilating near-bound variables in our experiments.
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。