Discovering and harnessing symmetry with machine learning
- 日時
- 2025年10月6日(月)16:00 - 17:30 (JST)
- 講演者
-
- Escriche Santos Eduardo (Ph.D. Student, Department of Computer Science, Technical University of Munich, Germany)
- 会場
- via Zoom
- 言語
- 英語
- ホスト
- Lingxiao Wang
Incorporating symmetry-inspired inductive biases into machine learning models has led to many significant advances in the field, especially for its application to scientific data. However, recently, a trend has emerged that favors implicitly learning relevant symmetries from data instead of designing constrained equivariant architectures. In this talk, I will first introduce these different modelling alternatives, together with their associated benefits and limitations. Then, I will describe some examples of automatic symmetry discovery methods as a way of mitigating some of those limitations. Finally, I will present our recent work that integrates symmetry discovery and the definition of an equivariant model into a joint learnable end-to-end approach, which further alleviates some of the limitations of current equivariant modelling approaches.
Reference
- Eduardo Santos Escriche, Stefanie Jegelka, Learning equivariant models by discovering symmetries with learnable augmentations, arXiv: 2506.03914
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。