日時
2025年10月6日(月)16:00 - 17:30 (JST)
講演者
会場
  • via Zoom
言語
英語
ホスト
Lingxiao Wang

Incorporating symmetry-inspired inductive biases into machine learning models has led to many significant advances in the field, especially for its application to scientific data. However, recently, a trend has emerged that favors implicitly learning relevant symmetries from data instead of designing constrained equivariant architectures. In this talk, I will first introduce these different modelling alternatives, together with their associated benefits and limitations. Then, I will describe some examples of automatic symmetry discovery methods as a way of mitigating some of those limitations. Finally, I will present our recent work that integrates symmetry discovery and the definition of an equivariant model into a joint learnable end-to-end approach, which further alleviates some of the limitations of current equivariant modelling approaches.

Reference

  1. Eduardo Santos Escriche, Stefanie Jegelka, Learning equivariant models by discovering symmetries with learnable augmentations, arXiv: 2506.03914

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる