イベント検索
64 件
-
セミナー
A dynamical model for IRAS 00500+6713: the remant of a type Iax supernova SN1181 hosting a double degenerate merger product WD J005311
2023年7月7日(金) 14:00 - 15:15
黄 天鋭 (東京大学 ビッグバン宇宙国際センター (RESCEU) 博士課程)
Iras 00500+6713 is a bright nebula in the infrared, and X-ray observations show it consists of diffuse region and strong illuminated central region. In addition, optical spectral observations have recently revealed that fast wind with about 15,000 km/s is blowing from the massive white dwarf at the center. The properties of this nebula and white dwarf are very similar to those theoretically predicted by the binary white dwarf merger. In addition, its position on the celestial sphere and the extent make it a prime candidate for the remnant of SN 1181, a historical supernova. In this study, we propose that such a multilayered structure is formed by the collision between the remnant of SN 1181 and the stellar wind blowing from the central white dwarf, and succeeded in constructing a model that is consistent with the multi-wavelength observations. The results show that the progenitor of SN 1181 is a binary white dwarf with 1.3-1.9 solar mass and that their merger triggered an explosion that ejected mass with 0.2-0.6 solar mass to form the present object. The extent of the X-ray source concentrated in the center reveals that these winds began blowing within the last 30 years, and we will discuss this property as well.
会場: セミナー室 (359号室) / via Zoom
イベント公式言語: 英語
-
セミナー
Quantum uncertainty of fields and its effect on entanglement generation in quantum particles
2023年5月31日(水) 14:00 - 15:15
杉山 祐紀 (九州大学 大学院理学府 物理学専攻 博士課程)
The unification of gravity and quantum mechanics is one of the important problems. To elucidate the theory of quantum gravity, it is becoming more and more important to get any hint of the quantum nature of gravity. In particular, the quantum-gravity-induced-entanglement of masses (QGEM) scenario, which is expected to observe the quantum nature of non-relativistic gravity, has recently attracted great attention. In this talk, we show the effect of relativistic fields on entanglement generation based on quantum field theory. We also discuss the relationship between the entanglement generation and quantum uncertainty of the fields.
会場: セミナー室 (359号室) / via Zoom
イベント公式言語: 英語
-
セミナー
X-ray study on the synchrotron emission in Kepler's SNR
2023年5月19日(金) 14:00 - 15:15
Vincenzo Sapienza (東京大学 大学院理学系研究科 物理学専攻 博士課程)
Synchrotron X-ray emission in young supernova remnants (SNRs) is a powerful diagnostic tool to study the population of high energy electrons accelerated at the shock front. We performed a spatially resolved spectral analysis of the young Kepler's SNR, where we identify two different regimes of particle acceleration. In the north, where the shock interacts with a dense circumstellar medium (CSM), we found a more efficient acceleration than in the south, where the shock velocity is higher and there are no signs of shock interaction with dense CSM. We also studied the temporal evolution of the synchrotron flux, from 2006 to 2014. A number of regions show a steady synchrotron flux and equal cooling and acceleration times. However, we found some regions where we measured a significant decrease in flux from 2006 to 2014. Our results display a coherent picture of the different regimes of electron acceleration observed in Kepler's SNR. Also If I will have time during the seminar it will be nice to present also some preliminary results I will have in the SN 1987A project.
会場: セミナー室 (359号室) / via Zoom
イベント公式言語: 英語
-
セミナー
Towards EeV Neutrino Astronomy with GRAND
2023年4月18日(火) 14:00 - 15:15
クミコ・コテラ (Director of Research, Institute of Astrophysics, France)
We are living exciting times: we are now able to probe the most violent events of the Universe with diverse messengers (cosmic rays, neutrinos, photons and gravitational waves). One challenge to complete the multi-messenger picture resides in the highest energies, as no ultra-high energy neutrinos have been observed yet. This challenge could be undertaken by the GRAND (Giant Radio Array for Neutrino Detection) project, which aims at detecting ultra-high energy particles, with a colossal array of 200'000 antennas over 200'000 km2, split into ~20 sub-arrays of ~10'000 km2 deployed worldwide. In this talk, we will present preliminary designs and simulation results, plans for the ongoing, staged approach to construction, and the rich research program made possible by the proposed sensitivity and angular resolution.
会場: コモンルーム (246-248号室) / via Zoom
イベント公式言語: 英語
-
セミナー
Cosmic magnetism and its effects on the observed properties of ultra high-energy cosmic rays
2023年3月10日(金) 14:00 - 15:00
Ellis Owen (大阪大学 大学院理学研究科 宇宙地球科学専攻 宇宙進化グループ JSPS特別研究員)
Ultra high-energy (UHE) cosmic rays (CRs) from distant sources interact with intergalactic radiation fields, leading to their spallation and attenuation through photo-hadronic processes. Their deflection and diffusion in large scale intergalactic magnetic fields (IGMFs), in particular those associated with Mpc-scale structures, alter the cumulative cooling and interactions of a CR ensemble to modify their spectral shape and composition observed on Earth. In this talk, I will demonstrate the extent to which IGMFs can affect observed UHE CRs, and show that source population models are degenerate with IGMF properties. Interpretation of observations, including the endorsement or rejection of any particular UHE CR source classes, needs careful consideration of the structural properties and evolution of IGMFs. Future observations providing tighter constraints on IGMF properties will significantly improve confidence in assessing UHE CR sources and their intrinsic CR production properties.
会場: via Zoom / コモンルーム (246-248号室)
イベント公式言語: 英語
-
セミナー
Understanding kilonova spectra and identification of r-process elements
2023年1月20日(金) 14:00 - 15:00
土本 菜々恵 (東北大学 大学院理学研究科 天文学専攻 博士課程(学術振興会特別研究員))
Binary neutron star (NS) merger is a promising site for the rapid neutron capture nucleosynthesis (r-process). The radioactive decay of newly synthesized elements powers electromagnetic radiation, as called kilonova. The detection of gravitational wave from a NS merger GW170817 and the observation of the associated kilonova AT2017gfo have provided with us the evidence that r-process happens in the NS merger. However, the abundance pattern synthesized in this event, which is important to understand the origin of the r-process elements, is not yet clear. In this talk, I will first introduce an overview and current understanding of kilonova. Then, I will discuss our recent findings of elemental features in photospheric spectra of kilonova toward identification of elements.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Mergers of neutron star-neutron star (or black hole) binaries as r-process sites
2023年1月13日(金) 14:00 - 15:00
和南城 伸也 (Senior Scientist, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Germany)
The discovery of an electromagnetic counterpart (kilonova) associated with GW170817 confirms that binary neutron star (NS) mergers are at least one of sites of r-process nucleosynthesis. However, there is no observational evidence that black hole (BH)-NS mergers are r-process sites. In this talk, we overview the latest work of nucleosynthesis based on long-term hydrodynamics simulations of NS-NS and BH-NS mergers covering early dynamical and late post-merger mass ejections. We also briefly discuss a possible constraint on nuclear equations of state.
会場: via Zoom / コモンルーム (246-248号室)
イベント公式言語: 英語
-
セミナー
Modelling Optical Signals from Magnetar-Driven Supernovae
2022年12月20日(火) 14:00 - 15:00
Conor Omand (Postdoctoral Researcher, Department of Astronomy, Stockholm University, Sweden)
Many energetic supernovae are thought to be powered by the rotational energy of a highly-magnetized, rapidly-rotating neutron star. The emission from the associated luminous pulsar wind nebula (PWN) can affect the system in different ways, including accelerating the ejecta, ionizing the ejecta, and breaking the spherical symmetry through hydrodynamic instabilities or large scale asymmetries. Modeling the observables from these processes; the light curves, spectrum, and polarization; is essential from understanding the nature of the central engine. I will present the results of a radiative transfer study looking at the effects of a PWN on the supernova nebular spectrum, and the preliminary results from a more physically motivated light curve model for parameter inference, and a study examining the polarization that arises due to hydrodynamic instabilities in the ejecta of engine-driven supernovae.
会場: コモンルーム (246-248号室) / via Zoom
イベント公式言語: 英語
-
セミナー
Quantum kinetics of neutrinos in high-energy astrophysical phenomena
2022年12月9日(金) 14:00 - 15:00
長倉 洋樹 (国立天文台 科学研究部 特任助教(国立天文台フェロー))
Neutrinos are the most mysterious and elusive particles in the standard model of particle physics. They play important roles in core-collapse supernovae and binary neutron star mergers as driving mass-ejection, synthesizing heavy elements including r-process nuclei, and neutrino signals from these sources. This exhibits the importance of accurate modeling of neutrino radiation field in these phenomena, which will be used to connect neutrino physics to multi-messenger astronomy. It has recently been suggested that neutrino-flavor conversion (or neutrino-oscillation) can ubiquitously occur in these astrophysical environments, exhibiting the requirement of quantum kinetic treatments in the modeling of neutrino transport. In this seminar, I will give an overview of the quantum kinetics neutrino transport and then introduce its recent progress, paying a special attention to the connection to astrophysics. I will also present the latest results of our numerical simulations of collective neutrino oscillations, which can be properly accounted for only by quantum kinetic framework.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Energy partition in Weibel-mediated shock waves: from Supernova Remnants to Gamma-Ray Bursts
2022年11月24日(木) 14:00 - 15:00
Arno Vanthieghem (Princeton-NINS Postdoctoral Research Fellow, Department of Astrophysical Sciences, Princeton University, USA)
Gamma-ray bursts and supernovae provide ideal environments for efficient energy channeling between different plasma species through collective processes such as collisionless shock waves. Extensively studied in astrophysical and laboratory environments, observations and kinetic simulations indicate strong electron heating in the precursor of collisionless shock waves propagating in unmagnetized electron-ion plasmas. We outline a theoretical model accounting for electron heating via a Joule-like process through the interplay between pitch-angle scattering in the microturbulence and the coherent electrostatic field induced by the difference in inertia between species. Using analytical kinetic estimates, semi-analytical Monte Carlo methods, and ab-initio Particle-In-Cell simulations, we demonstrate the validity of this model in the relativistic regime relevant to the afterglow emission of gamma-ray burst and extend it to characterize the electron-to-ion-temperature ratio in the downstream of nonrelativistic high-Mach numbers shock waves relevant for supernova remnants and laboratory experiments.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
UHECR anisotropy: effects of the Galactic magnetic field on the UHECR correlation studies
2022年11月4日(金) 14:00 - 15:00
樋口 諒 (理化学研究所 開拓研究本部 (CPR) 長瀧天体ビッグバン研究室 基礎科学特別研究員)
Telescope Array (TA) and Auger experiments reported anisotropies in the arrival direction of ultra-high-energy cosmic rays (UHECRs). In the current correlation studies between UHECRs and source candidates, the Auger experiment reported a correlation between the flux model of assumed sources and UHECR events and suggested a 10% contribution of starburst galaxies (SBGs) to the anisotropy of UHECRs. However, they do not consider the effect of coherent deflection by the galactic magnetic field (GMF), and they should significantly affect the results of the correlation studies. In this talk, we introduce a current study of UHECR anisotropy and the effect of GMF on them.
会場: via Zoom
イベント公式言語: 英語
-
Magnetic fields at extragalactic scales: origin from the early universe?
2022年10月7日(金) 14:00 - 15:00
難波 亮 (数理創造プログラム 上級研究員)
Blazar observations have provided tantalizing evidence for the presence of magnetic fields in the extragalactic regions, where astrophysical processes may not be an efficient source for their generation. While a natural speculation is to associate the production of such large-scale magnetic fields to inflationary physics, it has been known that magnetogenesis solely from inflation is quite challenging. In this talk I will discuss some mechanisms, successful/unsuccessful, for production of magnetic fields in the primordial universe, as well as the constraints from theoretical consistencies and observational data.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Hyperons in neutron stars: fast cooling, Joule heating and hyperon superfluidity
2022年9月26日(月) 14:00 - 15:00
Filippo Anzuini (Postdoc Fellow, Department of Astronomy, Monash University, Australia)
Neutron stars challenge current models of highly dense matter. Despite be- ing the targets of numerous observational campaigns (e.g. gravitational-wave searches and X-ray observations), their equation of state is still unknown. One of the most exciting possibilities is that “unconventional” particles such as hy- perons may appear in neutron star cores. Hyperons have a major impact on the observed thermal luminosity, because they accelerate the cooling rate via direct Urca processes, which copiously increase the neutrino emission from the core. Such mechanism is often considered to be a key signature of hyperon concentrations at high densities. Hyperon superfluidity plays a major role as well, because it can suppress the neutrino emissivity exponentially. The hope is that a comparison of the theoretical cooling curves against the available data of thermally-emitting neutron star can hint towards the existence of hyperons and their superfluidity. There is one ingredient, however, that is often neglected in neutron star cooling models: internal heating. The magnetic field of neutron stars decays due to the dissipation of the electric currents circulating in the crust, generating substantial Joule heating in the shallower layers. The ther- mal power generated by this process can counterbalance hyperon fast cooling, making it difficult to infer the presence of hyperons from the available thermal luminosity data, and complicating the link between measured thermal emission and internal composition. We show that this is the case for magnetars, because their crustal temperature is almost independent of hyperon direct Urca cooling in the core, regardless of whether hyperons are superfluid or not. Likewise, ther- mal luminosity data of moderately magnetized neutron stars are not suitable to extract information about the internal composition, as long as hyperons are superfluid.
会場: コモンルーム 246-248号室 とZoomのハイブリッド開催
イベント公式言語: 英語
-
MeV gamma-ray all sky simulation
2022年9月16日(金) 14:00 - 15:00
辻 直美 (神奈川大学 理学部 特別助教)
The MeV gamma-ray domain is the only unexplored window among recent multiwavelength observations in astrophysics, often referred to as the "MeV gap". To fulfill this gap, there are several ongoing and planned projects of MeV gamma-ray telescopes. The measurement of MeV gamma rays (both continuum and line emission) would give us new insight into many topics in astrophysics, such as relativistic jets, particle acceleration, and origin of matter. In advance of the future MeV gamma-ray missions, we have been working on prediction of the MeV gamma-ray sky, which is helpful to determine what kinds of sources can be detectable with the future telescopes. In order to explore the MeV gamma-ray sources, we performed a catalog cross-matching between the hard X-ray (Swift/BAT) and GeV gamma-ray (Fermi/LAT) catalogs, resulting in 145 firmly cross-matched sources. Combined with the Galactic diffuse emission, which is calculated by GALPROP to reconcile the cosmic-ray and gamma-ray spectra with observations by AMS-02, Voyager, and Fermi-LAT, the all-sky maps in the MeV gamma-ray band can be produced. This is also used to investigate a long-standing problem in the MeV gamma-ray astrophysics: the origin of the diffuse emission from the inner Galaxy, measured by COMPTEL. I will report the analysis and results in detail, and introduce future missions of the MeV gamma-ray detectors.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Search for Galactic SNR PeVatrons: γ-ray observations in the vicinity of SNRs G106.3+2.7 & HB9
2022年9月2日(金) 14:00 - 15:00
岡 知彦 (京都大学 大学院理学研究科 物理学・宇宙物理学専攻 博士課程)
Supernova remnants (SNRs) are believed to be the site of cosmic ray acceleration up to PeV (called PeVatron), but there is no conclusive observational evidence. The possible reason is that only young SNRs (t_age < 1 kyr) can accelerate CRs up to PeV, and then the particles escape at the early stage, thus, the opportunity to observe them is limited. To investigate this scenario, we observed and analyzed the following two SNRs. First, we focused on SNR G106.3+2.7, the most promising SNR as a PeVatron, since 100 TeV gamma rays have been detected with air shower experiments. With the gamma-ray observation results, we discussed the origin of the PeV CR in the vicinity of this middle-aged SNR (t_age = 5-10 kyr) and then obtained the following interpretation: CRs accelerated at the SNR in the past are illuminating the molecular cloud and producing gamma rays at present. Second, we analyzed the observation data around SNR HB9 and newly found gamma-ray emissions outside the SNR shell at the molecular cloud region. The gamma-ray emission can be explained by the protons accelerated and escaped from the SNR in the past. Therefore, we have attempted to measure the time evolution of the maximum acceleration energy at the SNR by comparing the gamma-ray spectra at the SNR shell and cloud regions. In this seminar, I will report the analysis results of those two SNRs.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Testing Astrophysical Models from the Shadow of the Galactic Center Black Hole
2022年8月26日(金) 14:00 - 15:00
水野 陽介 (T.D. Lee Fellow / Associate Professor, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, China)
We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength 1.3 mm. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of ~50 micro-arcsecond. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 million solar mass, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50 deg), as well as non-spinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way. In this talk, I will focus on more theoretical interpretation and model comparison to understand the accretion flow properties nearby Sgr A*.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Long-term evolution of a supernova remnant hosting a double neutron star binary
2022年7月1日(金) 14:00 - 15:00
松岡 知紀 (京都大学 大学院理学研究科 博士課程)
Stellar mass loss is one of the crucial elements which determine the fate of progenitors of core-collapse supernovae (SNe). Since the material released from the progenitor will be distributed as circumstellar medium (CSM), it can also have an influence on the subsequent evolution of the SN or supernova remnant (SNR). Despite its importance, mass loss histories predicted by stellar evolution models have not been incorporated with modeling for SNRs. As a first step, we investigate the dynamical evolution of an ultra-stripped supernova remnant (USSNR), originated from a type of core-collapse SN explosion proposed to be a candidate formation site of a double neutron star binary. By accounting for the mass-loss history of the progenitor binary using a model developed by a previous study, we construct the large-scale structure of the CSM up to a radius ∼100 pc, and simulate the explosion and subsequent evolution of a USSN surrounded by such a CSM environment. We find that the CSM encompasses an extended region characterized by a hot plasma with a temperature ∼10^8 K located around the termination shock of the wind from the progenitor binary (∼10 pc), and the USSNR blast wave is drastically weakened while penetrating through this hot plasma. Radio continuum emission from a young USSNR is sufficiently bright to be detectable if it inhabits our galaxy but faint compared to the observed Galactic SNRs. In this seminar I will talk about the background of the connection between the models for stellar evolution and SNRs, the details of our methods, and future prospects.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Core-collapse Supernova Models with Heavy Axion-like Particles
2022年6月3日(金) 14:00 - 15:00
森 寛治 (福岡大学 基盤研究機関 爆発天体研究所)
Axion-like particles (ALPs) are a class of hypothetical bosons which feebly interact with ordinary matter. The hot plasma of stars and core-collapse supernovae is a possible laboratory to explore physics beyond the standard model including ALPs. Once produced in a supernova, some of the ALPs can be absorbed by the supernova matter and affect energy transfer. We recently calculated the ALP emission in core-collapse supernovae and the backreaction on supernova dynamics consistently. It is found that the stalled bounce shock can be revived if the coupling between ALPs and photons is as high as $g_{a\gamma}\sim 10^{-9}$ GeV$^{-1}$ and the ALP mass is 40-400 MeV.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
The Hunt for Extraterrestrial Neutrino Counterparts
2022年5月20日(金) 16:00 - 17:00
Yannis Liodakis (Postdoctoral Researcher, University of Turku, Finland)
The origin of high-energy neutrinos is fundamental to our understanding of the Universe. Apart from the technical challenges of operating detectors deep below ice, oceans, and lakes, the phenomenological challenges are even greater. The sources are unknown, unpredictable, and we lack clear signatures. Neutrino astronomy therefore represents the greatest challenge faced by the astronomy and physics communities thus far. The possible neutrino sources range from accretion disks and tidal disruption events, through relativistic jets to galaxy clusters with blazar TXS 0506+056 the most compelling association thus far. Since then, immense effort has been put into associating AGN-jets with high-energy neutrinos, but to no avail. I will discuss our current efforts in understanding the multimessenger processes in the Universe, and once and for all proving or disproving if AGN-jets are neutrino emitters.
会場: via Zoom
イベント公式言語: 英語
-
セミナー
Coherent emission from 3D relativistic shocks
2022年4月22日(金) 14:00 - 15:00
岩本 昌倫 (九州大学)
The origin of fast radio bursts (FRBs; Lorimer et al. 2007) is one of the unsolved problems in astrophysics. Many observations of FRBs indicate that FRBs must be coherent emission in the sense that coherently moving electrons radiate electromagnetic waves. In relativistic shocks, it is well known that coherent electromagnetic waves are excited by synchrotron maser instability (SMI) in the shock transition (Hoshino & Arons 1991). The SMI is also known as the emission mechanism of coherent radio sources such as auroral kilometric radiation at Earth and Jovian decametric radiation. Recently, some models of fast radio burst based on the coherent emission from relativistic shock via the SMI have been proposed (e.g., Lyubarsky 2014; Beloborodov 2017; Plotnikov & Sironi 2019; Metzger et al. 2019) and the SMI in the context of relativistic shocks attracts more attention from astrophysics. In this study, by performing the world’s first three-dimensional (3D) particle-in-cell (PIC) simulation of relativistic shocks, we will demonstrate that large-amplitude electromagnetic waves are indeed excited by the SMI even in 3D and that the wave amplitude is significantly amplified and comparable to that in pair plasmas due to a positive feedback process associated with ion-electron coupling. Based on the simulation results, we will discuss the applicability of the SMI for FRBs in this talk.
会場: via Zoom
イベント公式言語: 英語
イベント
カテゴリ
シリーズ
- iTHEMSコロキウム
- MACSコロキウム
- iTHEMSセミナー
- iTHEMS数学セミナー
- Dark Matter WGセミナー
- iTHEMS生物学セミナー
- 理論物理学セミナー
- 情報理論SGセミナー
- Quantum Matterセミナー
- ABBL-iTHEMSジョイントアストロセミナー
- Math-Physセミナー
- Quantum Gravity Gatherings
- RIKEN Quantumセミナー
- Quantum Computation SGセミナー
- Asymptotics in Astrophysics SG Seminar
- GW-EOS WGセミナー
- DEEP-INセミナー
- NEW WGセミナー
- Lab-Theory Standing Talks
- 場の量子論セミナー
- STAMPセミナー
- QuCoInセミナー
- Number Theory Seminar
- 産学連携数理レクチャー
- Berkeley-iTHEMSセミナー
- iTHEMS-仁科センター中間子科学研究室ジョイントセミナー
- RIKEN Quantumレクチャー
- 作用素環論
- iTHEMS集中講義-Evolution of Cooperation
- 公開鍵暗号概論
- 結び目理論
- iTHES理論科学コロキウム
- SUURI-COOLセミナー
- iTHESセミナー