理論物理学セミナー

セミナー

理論物理学セミナー

Toward simulating Superstring/M-theory on a Quantum Computer

2020年10月23日17:00 - 18:00

花田 政範 (Department of Mathematics, University of Surrey, UK)

We present a framework for simulating superstring/M-theory on a quantum computer, based on holographic duality. Because holographicduality maps superstring/M-theory to quantum field theories (QFTs), we can study superstring/M-theory if we can put such QFTs on a quantum computer --- but it still looks like a complicated problem, if we use a usual lattice regularization. Here we propose an alternative approach, which turns out to be rather simple: we map the QFT problems to matrix models, especially the supersymmetric matrix models such as the Berenstein-Maldacena-Nastase (BMN) matrix model. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. It is straightforward to put the matrix models on a quantum computer, because they are just quantum mechanics of matrices, and the construction of QFTs is mapped to the preparation of certain states. We show the procedures are conceptually rather simple and efficient quantum algorithms can be applied. In addition, as a (kind of) byproduct, we provide a new formulation of pure Yang-Mills on quantum computer.

会場: via Zoom

イベント公式言語: 英語

セミナー

理論物理学セミナー

Realistic shell model and chiral three-body force

2020年10月22日13:30 - 15:00

福井 徳朗 (京都大学 基礎物理学研究所 研究員)

We show an evolution to derive the effective Hamiltonian in the shell-model framework starting from two- and three-body interactions based on the chiral effective field theory. A new way to calculate three-body matrix elements of the chiral interaction with the nonlocal regulator is proposed. We apply our framework to the p-shell nuclei and perform benchmark calculations to compare our results with those by an ab initio no-core shell-model. We report that our results are satisfactory and the contribution of the three-body force is essential to explain experimental low-lying spectra of the p-shell nuclei. We discuss the contribution of the three-body force on the effective single-particle energy extracted from the monopole interaction. Next, we investigate the shell evolution on the pf-shell nuclei. We show that the monopole component of the shell-model effective Hamiltonian induced by the three-body force plays an essential role to account for the experimental shell evolution. Moreover, we present our latest results on the investigation of the possible neutron dripline of the Ca isotopes. Finally, we discuss very neutron-rich systems, namely, the oxygen isotopes at the dripline and beyond, where the interplay between the three-body force and continuum states plays an important role.

会場: via Zoom

イベント公式言語: 英語

セミナー

理論物理学セミナー

Lefschetz-thimble inspired analysis of the Dykhne–Davis–Pechukas method and an application for the Schwinger Mechanism

2020年8月21日13:00 - 14:30

島崎 拓哉 (東京大学 ハドロン理論グループ 研究生)

Dykhne–Davis–Pechukas (DDP) method is a common approximation scheme for the transition probability in two-level quantum systems, as realized in the Landau–Zener effect, leading to an exponentially damping form comparable to the Schwinger pair production rate. We analyze the foundation of the DDP method using a modern complex technique inspired by the Lefschetz-thimble method. We derive an alternative and more adaptive formula that is useful even when the DDP method is inapplicable. As a benchmark, we study the modified Landau–Zener model and compare results from the DDP and our methods. We then revisit a derivation of the Schwinger Mechanism of particle production under electric fields using the DDP and our methods. We find that the DDP method gets worse for the Sauter type of short-lived electric pulse, while our method is still a reasonable approximation. We also study the Dynamically Assisted Schwinger Mechanism in two methods.

会場: via Zoom

イベント公式言語: 英語

セミナー

理論物理学セミナー

Nambu-Goldstone fermion in a Bose-Fermi mixture with an explicitly broken supersymmetry

2020年8月7日13:00 - 14:30

田島 裕之 (高知大学 自然科学系理工学部門 特任助教)

Supersymmetry, which is a symmetry associated with interchange between bosons and fermions, is one of the most important symmetries in high-energy physics but its evidence has never been observed yet. Apart from whether supersymmetric partners such as squark exist or not in our world, it is an interesting problem to explore the consequences of the supersymmetry in an ultracold atomic gas. In this study, we address the Nambu-Goldstone mode called Goldstino associated with the spontaneous supersymmetry breaking in a Bose-Fermi mixture. While the explicit supersymmetry breaking is unavoidable even in cold atomic systems, the energy gap in Goldstino spectra can be measured in such atomic systems. By comparing the energy gaps obtained from the Gell-Mann-Oakes-Renner relation and the random phase approximation, we elucidate how the Goldstino acquires the energy gap due to the explicit breakings. We also show effects of Goldstino pole on the fermionic single-particle spectral functions, which can be measured in the recent experiments.

会場: via Zoom

イベント公式言語: 英語

セミナー

理論物理学セミナー

Complex Langevin study of an attractively interacting two-component Fermi gas in 1D with population imbalance

2020年7月10日13:30 - 14:30

筒井 翔一朗 (理化学研究所 仁科加速器科学研究センター (RNC) 量子ハドロン物理学研究室 基礎科学特別研究員)

We investigate an attractively interacting two-component Fermi gas in 1D described by the Gaudin-Yang model with population imbalance. While the Gaudin-Yang model is known as a solvable model based on the thermodynamic Bethe ansatz, the binding energy and mass of poralon at finite temperature and moderate impurity density are still unknown. Moreover, in such a system, quantum Monte Carlo simulation suffers from the sign problem because the population imbalance makes the fermion determinant non-positive definite. In this study, we apply complex Langevin method, a holomorphic extension of the stochastic quantization to overcome the sign problem. We first confirm our numerical results satisfy a criteria for correct convergence [1], and present how the polaron energy depends on temperature and density of impurity. We also compare our results with a recent study based on a diagrammatic approach [2].

会場: via Zoom

イベント公式言語: 英語

セミナー

理論物理学セミナー

Field theoretical approach to relativistic hydrodynamics

2020年6月12日13:00 - 14:30

本郷 優 (数理創造プログラム 客員研究員 / Postdoctoral Research Associate, Physics Department, The University of Illinois at Chicago (UIC), USA)

Hydrodynamics is a low-energy effective theory of a conserved charge density, which describes a long-distance and long-time behavior of many-body systems. It is applicable not only to a non-relativistic weakly-interacting dilute gas but also a relativistic strongly-interacting dense liquid like a quark-gluon plasma. The main purpose of this seminar is to explain how we can derive the hydrodynamic equation from the underlying field-theoretical description of systems [1-3]. Our derivation is based on the recent development of non-equilibrium statistical mechanics, and we show that the procedure to derive hydrodynamic equations is similar to the so-called renormalized/optimized perturbation theory. Also, to describe transport phenomena in local thermal equilibrium, we give a path-integral formula for a thermodynamic functional, which results in the emergence of thermally induced curved spacetime [2]. These results enable us to derive hydrodynamic equation based on quantum field theories.

イベント公式言語: 英語