日時
2022年5月13日(金)14:00 - 16:30 (JST)
講演者
  • 佐野 岳人 (数理創造プログラム 基礎科学特別研究員)
会場
  • コモンルーム 246-248号室 とZoomのハイブリッド開催
言語
英語
ホスト
Keita Mikami

Jones polynomial is a knot invariant discovered by V. F. R. Jones in 1984. Not only that it is a useful mathematical tool, the discovery led to opening up a new research area, quantum topology, which connects quantum mechanics and low-dimensional topology. In 2000, M. Khovanov introduced a “categorification of the Jones polynomial”, which is now called Khovanov homology, and made categorification one of the fundamental concept in knot theory. Now what does categorification mean, and what is it good for?

In this talk, assuming that many of the audience are not familiar with abstract category theory, I will start from easy examples of categories and categorifications, for example categorification of natural numbers, and explain why they are something natural to think of. In the latter part, I will briefly explain the construction of Khovanov homology, and introduce several related topics.

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる

関連動画

YouTube(公開)

Khovanov homology theory - an introduction to categorification by Dr. Taketo Sano on May 13, 2022

関連ニュース