日時
2025年1月31日(金)14:00 - 16:00 (JST)
講演者
言語
英語
ホスト
Yuto Yamamoto

Algebraic analysis is a field which began with the study of differential equations in an algebraic framework, known as D-modules. The Riemann-Hilbert correspondence lies at the heart of this field, which bridges the worlds of analysis and geometry. Thanks to this, some geometric problems can be studied by using D-module theory, and vice versa. Based on D-module theory, Morihiko Saito introduced the concept of mixed Hodge modules, realizing Hodge theory on constructible sheaves, which brings us a functorial treatment of Hodge theory and various applications.

In this talk, we will begin with the linear differential equations on the complex plane and introduce monodromy, regularity and Deligne's Riemann-Hilbert correspondence. Then, as a generalization of it, I will explain the basics of the theory of D-modules and the Riemann-Hilbert correspondence. Finally, I will describe the role they play in the theory of Hodge modules and recent progress in this area.

For the audience's background knowledge, I will assume basic complex function theory. I will start with a simple example, so people outside the field are welcome.

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる