Understanding Diffusion Models by Feynman's Path Integral
- 日時
- 2024年10月9日(水)15:00 - 16:30 (JST)
- 講演者
-
- 広野 雄士 (大阪大学 大学院理学研究科 物理学専攻 助教)
- 会場
- セミナー室 (359号室) (メイン会場)
- via Zoom
- 言語
- 英語
- ホスト
- Lingxiao Wang
Diffusion models have emerged as powerful tools in generative modeling, especially in image generation tasks. In this talk, we introduce a novel perspective by formulating diffusion models using the path integral method introduced by Feynman for describing quantum mechanics. We find this formulation providing comprehensive descriptions of score-based diffusion generative models, such as the derivation of backward stochastic differential equations and loss functions for optimization. The formulation accommodates an interpolating parameter connecting stochastic and deterministic sampling schemes, and this parameter can be identified as a counterpart of Planck's constant in quantum physics. This analogy enables us to apply the Wentzel-Kramers-Brillouin (WKB) expansion, a well-established technique in quantum physics, for evaluating the negative log-likelihood to assess the performance disparity between stochastic and deterministic sampling schemes.
Reference
- Yuji Hirono, Akinori Tanaka, Kenji Fukushima, Understanding Diffusion Models by Feynman's Path Integral, Proceedings of the 41st International Conference on Machine Learning (ICML), PMLR 235:18324-18351 (2024), arXiv: 2403.11262
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。