日時
2024年11月25日(月)14:00 - 15:00 (JST)
講演者
  • 尾崎 翔 (弘前大学 大学院理工学研究科 助教)
言語
英語
ホスト
Lingxiao Wang

Inverse problems are widely studied in various scientific fields, including mathematics, physics, and medical imaging (such as CT and MRI reconstructions). In this talk, I will present a novel method for solving inverse problems using the diffusion model, with an application to CT reconstruction. The diffusion model, which is a core component of recent image-generative AI, such as Stable Diffusion and DALL-E3, is capable of producing high-quality images with rich diversity. The imaging process in CT (i.e., CT reconstruction) is mathematically an inverse problem. When the radiation dose is reduced to minimize a patient's exposure, image quality deteriorates due to information loss, making the CT reconstruction problem highly ill-posed. In the proposed method, the diffusion model, trained with a large dataset of high-quality images, serves as a regularization technique to address the ill-posedness. Consequently, the proposed method reconstructs high-quality images from sparse (low-dose) CT data while preserving the patient's anatomical structures. We also compare the performance of the proposed method with those of other existing methods, and find that the proposed method outperforms the existing methods in terms of quantitative indices.

Reference

  1. Sho Ozaki, Shizuo Kaji, Toshikazu Imae, Kanabu Nawa, Hideomi Yamashita, Keiichi Nakagawa, Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models, arXiv: arXi

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる

関連リンク