日時
2021年4月16日(金)13:30 - 15:00 (JST)
講演者
  • 深谷 賢治 (Permanent Member, Simons Center for Geometry and Physics, Stony Brook University, New York, USA)
会場
  • via Zoom
言語
英語

13:30pm-15:00pm (JST)

Mirror symmetry is a phenomenon discovered in String theory and is much discussed recently in mathematics especially in the field of complex (algebraic) geometry and symplectic geometry. Strominger-Yau-Zaslow found that this phenomenon is closed related to a Lagrangian torus fibration. In an integrable system in Hamiltonian dynamics, the phase space is foliated by Lagrangian tori. I would like to explain a program that the Lagrangian torus fibration found by Strominger-Yau-Zaslow could be regarded as one appearing certain integrable system and KAM theory (which describes a amiltonian dynamics that is a perturbation of an integrable system) could appear in the situation of Mirror symmetry.

関連リンク

関連ニュース