日時
2024年1月17日(水)15:00 - 16:15 (JST)
講演者
  • 間島 慶 (量子科学技術研究開発機構 (QST) 研究員)
会場
  • via Zoom
言語
英語
ホスト
Shinichiro Fujii

Note: The format of this event has changed from hybrid to Zoom only. However, you will still be able to watch it on the screen in Room #359 of the Main Research Building.

(This is a joint seminar with iTHEMS Biology group.)
Recent advances in machine learning have enabled the extraction of intrinsic information from neural activities, a field known as neural decoding. In this presentation, I will introduce several machine learning methods recently developed for neural decoding analysis: 1) a method for visualizing subjective images in the human mind based on brain activity [1], 2) a supervised algorithm designed for predicting discrete ordinal variables [2], and 3) a fast classical algorithm algorithm inspired by quantum computation for approximating principal component analysis (PCA) and canonical correlation analysis (CCA), potentially allowing for the analysis of vast-dimensional neural data [3]. Following these presentations, I am eager to engage in discussions with participants at the RIKEN Quantum Seminar regarding potential collaborations.

References

  1. N. Koide-Majima, S. Nishimoto, and K. Majima, Mental image reconstruction from human brain activity: Neural decoding of mental imagery via deep neural network-based Bayesian estimation, Neural Networks 170, 349 (2024), doi: 10.1016/j.neunet.2023.11.024
  2. E. Satake, K. Majima, S. Aoki, and Y. Kamitani, Sparse ordinal logistic regression and its application to brain decoding, Frontiers in Neuroinformatics 12, 51 (2018), doi: 10.3389/fninf.2018.00051
  3. N. Koide-Majima and K. Majima, Quantum-inspired canonical correlation analysis for exponentially large dimensional data, Neural Networks 135, 55 (2021), doi: 10.1016/j.neunet.2020.11.019

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる

関連リンク