iTHEMSセミナー
30 イベント
-
セミナー
Artificial Intelligence and Neuroscience
2025年4月11日(金) 14:00 - 15:30
近添 淳一 (広島大学 脳・こころ・感性科学研究センター 教授)
Recent advancements in artificial intelligence have led to various discoveries in the field of neuroscience. For example, it has been demonstrated that the information on orientation columns in the visual cortex and the basic taste information in the gustatory cortex can be extracted by applying machine learning to relatively low-resolution functional MRI data. Additionally, intriguing findings have emerged, such as the information processing structures of artificial neural circuits—designed independently of the brain—showing similarities to those of biological neural networks. In this talk, I will discuss the applications of artificial intelligence in neuroscience and explore future directions in this field.
会場: セミナー室 (359号室) (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
The puzzle of angular momentum conservation in beta decay and related processes.
2025年3月21日(金) 14:00 - 15:30
ゴードン・ベイム (Professor Emeritus, University of Illinois, USA)
This is a iTHEMS-FQSP joint seminar. We ask the question of how angular momentum is conserved in a number of related processes, from elastic scattering of a circularly polarized photon by an atom, where the scattered photon has a different spin direction than the original photon; to scattering of a fully relativistic spin-1/2 particle by a central potential; to inverse beta decay in which an electron is emitted following the capture of a neutrino on a nucleus, where the final spin is in a different direction than that of the neutrino – an apparent change of angular momentum. The apparent non-conservation of angular momentum arises in the quantum measurement process in which the measuring apparatus does not have an initially well-defined angular momentum, but is localized in direction in the outside world. We generalize the discussion to massive neutrinos and electrons, and examine nuclear beta decay and electron-positron annihilation processes through the same lens, enabling physically transparent derivations of angular and helicity distributions in these reactions.
会場: セミナー室 (359号室) (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
The Golden Age of Neutron Stars
2025年3月17日(月) 15:30 - 17:00
ゴードン・ベイム (Professor Emeritus, University of Illinois, USA)
This is a iTHEMS - Nishina Center Joint Seminar. Neutron stars were first posited in the early thirties, and discovered as pulsars in the late sixties; however we are only recently beginning to understand the matter they contain. After touching briefly on the history of neutron stars, I will describe the ongoing development of a consistent picture of the liquid interiors of neutron stars, now driven by ever increasing observations as well as theoretical advances. These include, in particular. observations of at least three heavy neutron stars of about 2.0 solar masses and higher; ongoing simultaneous inferences of masses and radii of neutron stars by the NICER telescope; and past and future observations of binary neutron star mergers, through gravitational waves as well as across the electromagnetic spectrum. I will also discuss pulsar timing arrays to detect very long wavelength gravitational waves, a remarkable role for neutron stars. Theoretically an understanding is emerging in QCD of how nuclear matter can turn into deconfined quark matter in the interior, and be capable of supporting heavy neutron stars, which I will illustrate with a discussion of modern quark-hadron crossover equations of state.
会場: 理化学研究所 和光キャンパス RIBF棟 2階 大会議室 (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
Applications of Geometry of Numbers to Phyllotaxis and Crystallography
2025年2月28日(金) 14:00 - 15:30
富安 亮子 (九州大学 マス・フォア・インダストリ研究所 教授)
The golden angle method, originally known from phyllotaxis in botany, has been used to generate dense point packings on surfaces of revolution. In my recent work, I have extended this method to general surfaces and higher-dimensional manifolds by employing the theories of products of linear forms in number theory, diagonalizable metrics in differential geometry, and local solutions of quasilinear hyperbolic equations. This extension suggests that any biological forms can exhibit phyllotactic patterns locally regardless of their morphology, while the overall pattern is influenced by their global properties in the embedded space. On the algebraic side, it is interesting that the same ideas used for phyllotaxis can also be applied to pseudorandom number generation over F2 = {0, 1}. This work is motivated by my previous research in crystallography. Time permitting, I will also introduce some of the research, which contributes to the analytical foundations of crystallography and is also an application of the geometry of numbers.
会場: セミナー室 (359号室) (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
Mathematical Studies on Human Cooperation
2025年2月12日(水) 15:00 - 17:00
村瀬 洋介 (理化学研究所 計算科学研究センター (R-CCS) 離散事象シミュレーション研究チーム 研究員)
Cooperation is a fundamental part of human society. But from an evolutionary perspective, it remains a puzzle—why do people help others even when it costs them? In theory, selfish individuals should have an advantage over cooperators. To explain how cooperative behaviors evolved, researchers have proposed several mechanisms, among which direct and indirect reciprocity play key roles in human interactions. In this talk, I will present my research on the evolution of cooperation, focusing on these two mechanisms. I will begin with an introduction to game theory and evolutionary game theory, which help us understand how people make decisions in strategic situations. Then, I will discuss my study on the repeated Prisoner’s Dilemma, where we discovered a new class of strategies through mathematical analysis and large-scale computations [1]. Finally, I will talk about my research on indirect reciprocity, a process where people cooperate based on reputation [2].
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Mathematics of the Future, Science of the Future: Large Language Models and Their Applications
2025年2月6日(木) 14:00 - 16:00
三内 顕義 (京都大学 大学院理学研究科 特定准教授)
In recent years, the rapid development of large language models (LLMs) such as ChatGPT has given many researchers a strong impression that these systems truly exhibit “intelligence.” In this presentation, we first review the evolution of AI research, explaining how large language models go beyond conventional machine learning by enabling more “general” forms of learning. We then highlight the importance of “sensors” and “mathematical capability” as key factors that allow AI to autonomously carry out scientific tasks such as problem analysis, hypothesis generation, and proofs in fields like mathematics and physics. We also examine how proof assistants can address the issue of hallucinations in LLM outputs, and discuss the role of combinatorial creativity in accelerating interdisciplinary research. Finally, we introduce our “AI Mathematician” agent project, demonstrating how integrating large language models with proof assistants can open new horizons in mathematical sciences.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
Hopfions in Condensed Matter and Field Theory
2024年12月16日(月) 16:00 - 17:30
Avadh Saxena (Professor, Los Alamos National Laboratory, USA)
Abstract: Nontrivial topological defects such as knotted solitons called hopfions have been observed in a variety of materials including chiral magnets, nematic liquid crystals and even in ferroelectrics as well as studied in other physical contexts such as Bose-Einstein condensates. These topological entities can be modeled using the relevant physical variable, e.g., magnetization, polarization or the director field. Specifically, we find exact static soliton solutions for the unit spin vector field of an inhomogeneous, anisotropic three-dimensional (3D) Heisenberg ferromagnet and calculate the corresponding Hopf invariant H analytically and obtain an integer, demonstrating that these solitons are indeed hopfions [1]. H is a product of two integers, the first being the usual winding number of a skyrmion in two dimensions, while the second encodes the periodicity in the third dimension. We also study the underlying geometry of H, by mapping the 3D unit vector field to tangent vectors of three appropriately defined space curves. Our analysis shows that a certain intrinsic twist is necessary to yield a nontrivial topological invariant: linking number [2]. Finally, we focus on the formation energy of hopfions to study their properties for potential applications. Short bio: Avadh Saxena is former Group Leader of the Condensed Matter and Complex Systems group (T-4) at Los Alamos National Lab, New Mexico, USA where he has been since 1990. He is also an affiliate of the Center for Nonlinear Studies at Los Alamos. His main research interests include phase transitions, optical, electronic, vibrational, transport and magnetic properties of functional materials, device physics, soft condensed matter, non-Hermitian quantum mechanics, geometry, topology and nonlinear phenomena & materials harboring topological defects such as solitons, polarons, excitons, breathers, skyrmions and hopfions. He recently completed a book on “Phase Transitions from a Materials Perspective” (Cambridge University Press, 2024). He is an Affiliate Professor at the Royal Institute of Technology (KTH), Stockholm, Sweden and holds adjunct professor positions at the University of Barcelona, Spain, University of Crete, Greece, Virginia Tech and the University of Arizona, Tucson. He is Scientific Advisor to National Institute for Materials Science (NIMS), Tsukuba, Japan. He is a Fellow of Los Alamos National Lab, a Fellow of the American Physical Society (APS), a Fellow of the Japan Society for the Promotion of Science (JSPS) and a member of the Sigma Xi Scientific Research Society, APS and American Ceramic Society (ACerS).
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
Studying quark-gluon plasma with multi-stage dynamical models in relativistic nuclear collisions
2024年12月10日(火) 15:30 - 17:00
金久保 優花 (数理創造プログラム 特別研究員)
A collision of relativistically accelerated large nuclei creates the hottest matter on Earth — quark-gluon plasma (QGP). The properties of QGP have been studied through comparisons of final-state particle distributions between theoretical models and experimental data. To quantitatively constrain QGP properties, it is necessary to build Monte Carlo models that simulate the space-time evolution of the system throughout the entire collision process. This includes the initial matter production from the accelerated nuclei, the evolution of QGP, hadronisation, and the evolution of hadron gas. In this talk, I will first explain how theoretical models, based on relativistic hydrodynamics and hadronic transport, are conventionally built and how they successfully extract QGP properties. Next, I will discuss a hot topic: the possibility of finding QGP in proton-proton collisions, based on results from a state-of-the-art model that includes both equilibrated and non-equilibrated systems. Also, I will introduce a novel Monte Carlo initial state model based on perturbative QCD minijet production supplemented with a saturation picture. This Monte-Carlo EKRT model is one of the first initial state models for hydrodynamics to describe initial particle production from small to large momentum within a single framework, where total energy-momentum and charge conservations are imposed.
会場: セミナー室 (359号室) (メイン会場) / via Zoom
イベント公式言語: 英語
-
Entanglement of astrophysical neutrinos
2024年12月10日(火) 13:30 - 15:00
Baha Balantekin (Eugene P. Wigner Professor, Department of Physics, University of Wisconsin-Madison, USA)
Collective oscillations of neutrinos represent emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. In this talk, after a brief introduction, it will be shown that neutrinos exhibit interesting entanglement behavior in simplified models of those oscillations. Attempts to study this behavior using classical and quantum computers will be described. An intriguing connection to the heavy-element nucleosynthesis, namely the possibility of neutrino entanglement driving a new kind of i-process nucleosynthesis, will be introduced,
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Crop domestication
2024年11月25日(月) 15:00 - 17:00
Cheng-Ruei Lee (Professor, Institute of Ecology and Evolutionary Biology, National Taiwan University, Taiwan)
ジェフリ・フォーセット (数理創造プログラム 上級研究員)This is a joint seminar hosted by the Mathematical Biology lab of Kyushu University where Jeffrey Fawcett (iTHEMS) and Cheng-Ruei Lee (National Taiwan University) will give talks about plant domestication. Both talks will be aimed at students and will include some basic introduction of the topic. The seminar will be held on-site at Kyushu University and also by zoom so please free to register and join. Program: Title: Domestication and dispersal process of common buckwheat Speaker: Dr. Jeffrey Fawcett (RIKEN iTHEMS) Abstract: Crop domestication has not only been an ideal model to study how selection drives evolution, it is also tightly linked to past human activity and contains useful information that can improve plant breeding. Common buckwheat (Fagopyrum esculentum), which is used to make “soba” noodles in Japan, was domesticated from a wild progenitor species distributed in Southwest China. We have been using whole-genome sequences of several hundred cultivated accessions from around the world and some wild progenitor accessions to study its process of domestication and subsequent dispersal throughout Eurasia including Japan. In this talk, I will first provide an overview of the domestication and dispersal process of common buckwheat based on archaeological findings. I will then discuss the domestication and dispersal process and adaptive evolution of common buckwheat based on results of our population genetic analyses [1]. Title: The domestication and expansion history of mung bean and adzuki bean: evidence from population genomics Speaker: Prof. Cheng-Ruei Lee (National Taiwan University) Abstract: Who domesticated the crops we eat? When and where? What happened after domestication? How did crops spread across the world? These are the questions that have fascinated archaeologists for a long time. Using modern genomics techniques, we aim to answer these questions from a different angle. In mung bean (Vigna radiata), we uncovered a unique route of post-domestication range expansion. This route cannot be explained simply by human activities alone; instead, it is highly associated with the natural climates across Asia. We showed how the trans-continental climatic variability affected the range expansion of a crop and further influenced local agricultural practices and the agronomic properties of mung bean varieties. In adzuki (Vigna angularis), we obtained solid evidence of its domestication in Japan, most likely by the Jomons. We identified and validated the causal mutations for the seed coat color change during domestication. Contrary to the common belief that important yield-ensuring phenotypes (e.g., loss of pod shattering) should be selected early during domestication, we revealed a unique order of domestication trait evolution that cannot be observed from archaeological records directly [2]. Please register via the form by November 22nd (Fri.). We will share the Zoom link with online participants on the morning of the event day.
会場: 九州大学 伊都キャンパス W1-C-909 /
イベント公式言語: 英語
-
Emergence of wormholes from quantum chaos
2024年11月12日(火) 16:30 - 18:00
ガブリエル・ディウバルド (数理創造プログラム 特別研究員)
I will give a broad introduction to some aspects of quantum gravity and the so-called black hole information problem. I will introduce wormholes as novel contributions to the gravitational path integral and how they provide a solution to the black hole information problem. Wormholes, however, are rather mysterious and we don’t have a good microscopic understanding of them and why we should include them in the our theory. In particular, wormholes seem to imply that gravity is not a proper quantum system but rather an average over a statistical ensemble of quantum systems. I will then transition into my own work which addresses these questions in the context of holography. I will show how wormholes in 3D quantum gravity can emerge from quantum chaos in the dual 2D Conformal Field Theory, without averaging. Wormholes capture coarse-grained properties of the CFT and conversely an individual chaotic CFT can effectively behave as an averaged system. Furthermore we will be able to explicitly factorize wormholes to extract microscopic information on black hole microstates. To achieve this I will (briefly) introduce and use tools such as Random Matrix Theory, the Gutzwiller Trace formula and Berry’s diagonal approximation, and the theory of SL(2,Z) non-holomorphic modular forms.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Dynamics of Phase Transitions: Between First and Second Order
2024年10月8日(火) 16:00 - 17:30
鈴木 史花 (CNLS Postdoctoral Research Associate, T4 / Center for Nonlinear Studies, Los Alamos National Laboratory, USA)
Phase transitions are typically classified as either first-order or second-order. The formation of topological defects in second-order phase transitions is well described by the Kibble-Zurek mechanism, while nucleation theory addresses first-order phase transitions. However, certain systems, such as superconductors and liquid crystals, can exhibit “weakly first-order” phase transitions that do not fit into these established frameworks. In this presentation, I introduce a new theoretical approach that combines the Kibble-Zurek mechanism with nucleation theory to explain topological defect formation in weakly first-order phase transitions. Additionally, I will discuss nonlinear quantum phase transitions that exhibit behaviors similar to weakly first-order transitions, which can be related to experiments with ultra-cold Rydberg atoms.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催 (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
Stringy Nonlocality: Operator Formalism and Implications
2024年7月26日(金) 14:00 - 15:30
ウェイシャン・シャオ (Ph.D. Student, Department of Physics, National Taiwan University, Taiwan)
Nonlocality is a fundamental property of string theory, where point-like particles are replaced by extended strings. This feature is especially evident in string field theories, where field components interact through form factors containing spacetime derivatives of infinite order. The usual approach to canonical quantization is no longer applicable, and thus a non-perturbative treatment of nonlocal effects at the quantum level remains unclear. In this seminar, I will discuss a recent attempt to construct an operator formalism for stringy nonlocal field theories, and explore the potential implications for black hole radiation and primordial fluctuations in the early universe.
会場: セミナー室 (359号室) 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
Quantum simulation of QCD matter: from hadronic scattering to gauge field qubit encoding
2024年4月3日(水) 10:00 - 11:00
ティエンイン・リー (Ph.D. Student, Institute of Quantum Matter, South China Normal University, China)
Recently, quantum computing (QC) has become a new method for solving non-perturbative problems in high-energy physics. Compared to traditional Monte Carlo simulations, the QC method does not encounter the sign problem, making it an effective approach for solving dynamical and finite density problems. The first part of this talk focuses on the quantum simulation of the hadronic scattering process, including the initial state parton distribution functions, intermediate state partonic scattering amplitudes, and final state hadronization. The second part of this talk concentrates on the qubit encoding of Hamiltonian formalism in lattice gauge field theory with a Coulomb gauge. As a preliminary attempt, the qubit encoding of (3+1)-dimensional Coulomb gauge QED will be discussed.
会場: via Zoom
イベント公式言語: 英語
-
Macroscopic neutrinoless double beta decay: long range quantum coherence
2024年3月6日(水) 15:30 - 17:30
ゴードン・ベイム (Professor Emeritus, University of Illinois, USA)
This talk will introduce the concept of ``macroscopic neutrinoless double beta decay" (MDBD) for Majorana neutrinos. In this process an antineutrino produced by a nucleus undergoing beta decay, $X\to Y + e^- + \bar \nu_e$, is absorbed as a neutrino by another identical $X$ nucleus via the inverse beta decay reaction, $\nu_e + X \to e^-+Y$. The distinct signature of MDBD is that the total kinetic energy of the two electrons equals twice the end-point energy of single beta decay. The amplitude for MDBD, a coherent sum over the contribution of different mass states of the intermediate neutrinos, reflects quantum coherence over macroscopic distances, and is a new macroscopic quantum effect. We discuss the similarities and differences between the MDBD and conventional neutrinoless double beta decay, as well as give estimates of the rates of MDBD and backgrounds.
会場: 研究本館 3階 359号室とZoomのハイブリッド開催 (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
Dust-driven instabilities in protoplanetary disks: toward understanding formation of planetesimals
2024年1月17日(水) 10:30 - 11:30
冨永 遼佑 (理化学研究所 開拓研究本部 (CPR) 坂井星・惑星形成研究室 基礎特別研究員)
Planet formation starts from collisional growth of sub-micron-sized dust grains in a gas disk called a protoplanetary disk. They are expected to grow toward km-sized objects called planetesimals. The resulting planetesimals further coalesce by gravity and form planets. However, there are some barriers preventing planetesimal formation, which includes fast radial drift and collisional fragmentation of dust grains. To circumvent the barriers and to explain planetesimal formation, previous studies have proposed hydrodynamic instabilities of dusty-gas disks. The instabilities can cause dust clumping, and planetesimals form if the resulting clumps collapse self-gravitationally. We have been investigating the linear/nonlinear development of these dust-gas instabilities. We also found a new instability driven by collisional growth of dust, which can bridge a potential gap between the first dust growth and the later planetesimal formation via the previous instabilities. In this talk, I will introduce our work on the dust-driven instabilities and their impact on planetesimal formation.
会場: 研究本館 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
Cosection localization via shifted symplectic geometry
2023年12月6日(水) 10:00 - 11:30
Young-Hoon Kiem (Professor, School of Mathematics, Korea Institute for Advanced Study (KIAS), Republic of Korea)
Modern enumerative invariants are defined as integrals of cohomology classes against virtual fundamental classes constructed by Li-Tian and Behrend-Fantechi. When the obstruction sheaf admits a cosection, the virtual fundamental class is localized to the zero locus of the cosection. When the cosection is furthermore enhanced to a (-1)-shifted closed 1-form, the zero locus admits a (-2)-shifted symplectic structure and thus we have another virtual fundamental class by the Oh-Thomas construction. An obvious question is whether these two virtual fundamental classes coincide or not. In this talk, we will see that (-1)-shifted closed 1-forms arise naturally as an analogue of the Lagrange multiplier method. Furthermore, a proof of the equality of the two virtual fundamental classes and its applications will be discussed. Based on a joint work with Hyeonjun Park.
会場: セミナー室 (359号室)
イベント公式言語: 英語
-
The Cosmic Gravitational Microwave Background
2023年9月6日(水) 15:00 - 16:30
イヤン・シュテエグ (数理創造プログラム 特別研究員)
The thermal plasma in the early universe produced a guaranteed stochastic gravitational wave (GW) background, which peaks today in the microwave regime and was dubbed the cosmic gravitational microwave background (CGMB). I show that the CGMB spectrum encodes fundamental information about particle physics and gravity at ultra high energies. In particular, one can determine from the CGMB spectrum the maximum temperature of the universe and the effective degrees of freedom at the maximum temperature. I also discuss briefly how quantum gravity effects arise in the CGMB spectrum as corrections to the leading order result.
会場: 研究本館 3階 359号室とZoomのハイブリッド開催
イベント公式言語: 英語
-
セミナー
MNISQ: A Large-Scale Quantum Circuit Dataset for Machine Learning on/for Quantum Computers in the NISQ era
2023年8月29日(火) 14:00 - 15:30
Leonardo Placidi (大阪大学 大学院基礎工学研究科 博士課程)
We introduce the first large-scale dataset, MNISQ, for both the Quantum and the Classical Machine Learning community during the Noisy Intermediate-Scale Quantum era. MNISQ consists of 4,950,000 data points organized in 9 subdatasets. Building our dataset from the quantum encoding of classical information (e.g., MNIST dataset), we deliver a dataset in a dual form: in quantum form, as circuits, and in classical form, as quantum circuit descriptions (quantum programming language, QASM). In fact, also Machine Learning research related to quantum computers undertakes a dual challenge: enhancing machine learning by exploiting the power of quantum computers, while also leveraging state-of-the-art classical machine learning methodologies to help the advancement of quantum computing. Therefore, we perform circuit classification on our dataset, tackling the task with both quantum and classical models. In the quantum endeavor, we test our circuit dataset with Quantum Kernel methods, and we show excellent results with up to 97% accuracy. In the classical world, the underlying quantum mechanical structures within the quantum circuit data are not trivial. Nevertheless, we test our dataset on three classical models: Structured State Space sequence model (S4), Transformer, and LSTM. In particular, the S4 model applied on the tokenized QASM sequences reaches an impressive 77% accuracy. These findings illustrate that quantum circuit-related datasets are likely to be quantum advantageous, but also that state-of-the-art machine learning methodologies can competently classify and recognize quantum circuits. We finally entrust the quantum and classical machine learning community.
会場: 理化学研究所 和光キャンパス (メイン会場) / via Zoom
イベント公式言語: 英語
-
セミナー
Conserved charges in the quantum simulation of integrable spin chains
2023年7月12日(水) 13:30 - 15:00
Juan William Pedersen (東京大学 大学院総合文化研究科 博士課程)
In this talk, we present the result of the quantum simulation of the spin-1/2 Heisenberg XXX spin chain. We implement the integrable Trotterization algorithm, which allows us to control the Trotter error with conserved charges remaining conserved, on a real quantum computer and classical simulators. We study the effects of quantum noise on the time evolution of several conserved charges and specifically observe the decay of the expectation values. Our work improves our understanding of quantum noises and can potentially be applied to benchmark quantum devices and algorithms.
会場: セミナー室 (359号室) (メイン会場) / via Zoom
イベント公式言語: 英語
30 イベント
イベント
カテゴリ
シリーズ
- iTHEMSコロキウム
- MACSコロキウム
- iTHEMSセミナー
- iTHEMS数学セミナー
- Dark Matter WGセミナー
- iTHEMS生物学セミナー
- 理論物理学セミナー
- 情報理論SGセミナー
- Quantum Matterセミナー
- ABBL-iTHEMSジョイントアストロセミナー
- Math-Physセミナー
- Quantum Gravity Gatherings
- RIKEN Quantumセミナー
- Quantum Computation SGセミナー
- Asymptotics in Astrophysics SG Seminar
- GW-EOS WGセミナー
- DEEP-INセミナー
- NEW WGセミナー
- Lab-Theory Standing Talks
- 場の量子論セミナー
- STAMPセミナー
- QuCoInセミナー
- Number Theory Seminar
- 産学連携数理レクチャー
- Berkeley-iTHEMSセミナー
- iTHEMS-仁科センター中間子科学研究室ジョイントセミナー
- RIKEN Quantumレクチャー
- 作用素環論
- iTHEMS集中講義-Evolution of Cooperation
- 公開鍵暗号概論
- 結び目理論
- iTHES理論科学コロキウム
- SUURI-COOLセミナー
- iTHESセミナー