日時
2024年6月27日(木)16:00 - 17:30 (JST)
講演者
  • Chen Xiaowen (Postdoctoral Researcher, Laboratoire de Physique de l’École normale supérieure, CNRS, France)
会場
  • via Zoom
言語
英語
ホスト
Lingxiao Wang

(This is a joint iTHEMS Biology Seminar)
From social animals to neuronal networks, collective behavior is ubiquitous in living systems. How are these behaviors encoded in interactions, and how do they drive biological functions? Recent insights from statistical physics applied to biological data have offer exciting new perspectives. However, previous research has mostly focused on the statics, i.e. the steady-state distributions of the collective behavior, without taking into consideration of time. In this talk, I will present two recent progresses tapping into the temporal domain. First, I will present a study of collective behavior in social mice from their co-localization patterns. To capture both static and dynamic features of the data, we developed a novel inference method termed the generalized Glauber dynamics (GGD) that can tune the dynamics while keeping the steady state distribution fixed. I will first outline the explanation power of the GGD dynamics, then explain how to infer the dynamics from data. The inferred interactions characterize sociability for different mice strains. In the second example, we studied information flow among neurons in the larval zebrafish hindbrain. By adapting the method of Granger causality to single cell calcium transient data, we were able to detect both a global information flow among neurons, as well as identifying brain regions that are key in locomotion.

Reference

  1. Xiaowen Chen, Maciej Winiarski, Alicja Puścian, Ewelina Knapska, Aleksandra M. Walczak, and Thierry Mora, Generalized Glauber Dynamics for Inference in Biology, Phys. Rev. X 13, 041053 (2023), doi: 10.1103/PhysRevX.13.041053

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる

関連リンク

関連ニュース