日時
2024年1月17日(水)16:30 - 17:45 (JST)
講演者
  • 磯村 拓哉 (理化学研究所 脳神経科学研究センター (CBS) 脳型知能理論研究ユニット ユニットリーダー)
言語
英語
ホスト
Shinichiro Fujii

(This is a joint seminar with iTHEMS Biology group.)
Bayesian mechanics is a framework that addresses dynamical systems that can be conceptualised as Bayesian inference. However, the elucidation of requisite generative models is required for empirical applications to realistic self-organising systems. This talk introduces that the Hamiltonian of generic dynamical systems constitutes a class of generative models, thus rendering their Helmholtz energy naturally equivalent to variational free energy under the identified generative model. The self-organisation that minimises the Helmholtz energy entails matching the system's Hamiltonian with that of the environment, leading to an ensuing emergence of their generalised synchrony. In short, these self-organising systems can be read as performing variational Bayesian inference of the interacting environment. These properties have been demonstrated with coupled oscillators, simulated and living neural networks, and quantum computers. This notion offers foundational characterisations and predictions regarding asymptotic properties of self-organising systems exchanging with the environment, providing insights into potential mechanisms underlying emergence of intelligence.

References

  1. T. Isomura, Bayesian mechanics of self-organising systems, arXiv:2311.10216 (2023), arXiv: 2311.10216
  2. T. Isomura, K. Kotani, Y. Jimbo, and K. J. Friston, Experimental validation of the free-energy principle with in vitro neural networks, Nature Communications 14, 4547 (2023), doi: 10.1038/s41467-023-40141-z
  3. T. Isomura, H. Shimazaki, and K. J. Friston, Canonical neural networks perform active inference, Communications Biology 5, 55 (2022), doi: 10.1038/s42003-021-02994-2

このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。

このイベントについて問い合わせる