An introduction to the exact WKB analysis via the hypergeometric differential equation
- 日時
- 2024年2月19日(月)09:00 - 22日(木)17:00 (JST)
- 講演者
-
- 青木 貴史 (近畿大学 理工学部 名誉教授)
- 会場
- セミナー室 (359号室) (メイン会場)
- via Zoom
- 言語
- 英語
- ホスト
- Ryo Namba
This is an introductory course to the exact WKB analysis. Firstly we review some basic facts concerning formal power series and WKB solutions. Secondly we give an overview of the connection formulas for WKB solutions to ordinary differential equations of second order with a large parameter. Next, after recalling some classical theory for the Airy equation and the Gauss hypergeometric differential equation, we show how the exact WKB analysis is used for these equations and what are obtained. One of the main results to be presented in this course is the relation the between the classical hypergeometric function and the Borel resummed WKB solutions to the hypergeometric differential equation with a large parameter. Some applications and recent topics are also given.
[Schedule (Tentative)]
Day 1
10:00 - 11:30 Lecture 1
14:00 - 16:00 Lecture 2
Day 2
10:00 - 11:30 Lecture 3
14:00 - 16:00 Lecture 4
Day 3
10:00 - 11:30 Lecture 5
14:00 - 16:00 Lecture 6
Day 4
10:00 - 11:30 Lecture 7
14:00 - 16:00 Lecture 8
[Contents]
- Introduction
- Exact WKB analysis for ordinary differential equation of second order with a large parameter
- Some classical theory for the Airy equation and the Gauss hypergeometric equation
- Exact WKB analysis for the Airy equation
- Exact WKB analysis for the Gauss hypergeometric equation
- Some applications and recent topics
このイベントは研究者向けのクローズドイベントです。一般の方はご参加頂けません。メンバーや関係者以外の方で参加ご希望の方は、フォームよりお問い合わせ下さい。講演者やホストの意向により、ご参加頂けない場合もありますので、ご了承下さい。