iTHEMS Theoretical Physics Seminar
87 events
-
Seminar
KPZ equation, attractive bosons, and the Efimov effect
December 3 (Thu) at 13:00 - 14:30, 2020
Yusuke Nishida (Associate Professor, Department of Physics, Tokyo Institute of Technology)
The Kardar-Parisi-Zhang (KPZ) equation for surface growth has been a paradigmatic model in nonequilibrium statistical physics. In particular, it in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto quantum mechanics of attractive bosons with a contact interaction, where the roughening transition corresponds to a binding transition of two bosons with increasing the attraction. Such critical bosons in three dimensions actually exhibit the Efimov effect, where a three-boson coupling turns out to be relevant under the renormalization group so as to break the scale invariance down to discrete one. On the basis of these facts linking the two distinct subjects in physics, we predict that the KPZ roughening transition in three dimensions shows either the discrete scale invariance or no intrinsic scale invariance.
Venue: via Zoom
Event Official Language: English
-
Seminar
Some idea on quantum tunneling via Lefschetz thimbles
November 12 (Thu) at 10:30 - 12:00, 2020
Yuya Tanizaki (Special Postdoctoral Researcher, Theory Group, RIKEN Nishina Center for Accelerator-Based Science (RNC) / Assistant Professor, Yukawa Institute for Theoretical Physics, Kyoto University)
In this talk, I will explain my previous study with Takayuki Koike on a possible approach to quantum tunneling via Lefschetz thimbles. We classified all the complex saddle points for the real-time path integral for the symmetric double-well quantum mechanics. We looked at various properties of those complex solutions, which motivated us to conclude that the computation of tunneling amplitudes for the symmetric double well requires the interference of infinitely many Lefschetz thimbles. I would also like to talk about some speculations, admittingly being very optimistic.
Venue: via Zoom
Event Official Language: English
-
Seminar
Toward simulating Superstring/M-theory on a Quantum Computer
October 23 (Fri) at 17:00 - 18:00, 2020
Masanori Hanada (Department of Mathematics, University of Surrey, UK)
We present a framework for simulating superstring/M-theory on a quantum computer, based on holographic duality. Because holographicduality maps superstring/M-theory to quantum field theories (QFTs), we can study superstring/M-theory if we can put such QFTs on a quantum computer --- but it still looks like a complicated problem, if we use a usual lattice regularization. Here we propose an alternative approach, which turns out to be rather simple: we map the QFT problems to matrix models, especially the supersymmetric matrix models such as the Berenstein-Maldacena-Nastase (BMN) matrix model. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. It is straightforward to put the matrix models on a quantum computer, because they are just quantum mechanics of matrices, and the construction of QFTs is mapped to the preparation of certain states. We show the procedures are conceptually rather simple and efficient quantum algorithms can be applied. In addition, as a (kind of) byproduct, we provide a new formulation of pure Yang-Mills on quantum computer. If you would like to participate, please register using the form below.
Venue: via Zoom
Event Official Language: English
-
Seminar
Realistic shell model and chiral three-body force
October 22 (Thu) at 13:30 - 15:00, 2020
Tokuro Fukui (Researcher, Yukawa Institute for Theoretical Physics, Kyoto University)
We show an evolution to derive the effective Hamiltonian in the shell-model framework starting from two- and three-body interactions based on the chiral effective field theory. A new way to calculate three-body matrix elements of the chiral interaction with the nonlocal regulator is proposed. We apply our framework to the p-shell nuclei and perform benchmark calculations to compare our results with those by an ab initio no-core shell-model. We report that our results are satisfactory and the contribution of the three-body force is essential to explain experimental low-lying spectra of the p-shell nuclei. We discuss the contribution of the three-body force on the effective single-particle energy extracted from the monopole interaction. Next, we investigate the shell evolution on the pf-shell nuclei. We show that the monopole component of the shell-model effective Hamiltonian induced by the three-body force plays an essential role to account for the experimental shell evolution. Moreover, we present our latest results on the investigation of the possible neutron dripline of the Ca isotopes. Finally, we discuss very neutron-rich systems, namely, the oxygen isotopes at the dripline and beyond, where the interplay between the three-body force and continuum states plays an important role. If you would like to participate, please register using the form below.
Venue: via Zoom
Event Official Language: English
-
Seminar
Lefschetz-thimble inspired analysis of the Dykhne–Davis–Pechukas method and an application for the Schwinger Mechanism
August 21 (Fri) at 13:00 - 14:30, 2020
Takuya Shimazaki (Researcher, Hadron Theory Group, The University of Tokyo)
Dykhne–Davis–Pechukas (DDP) method is a common approximation scheme for the transition probability in two-level quantum systems, as realized in the Landau–Zener effect, leading to an exponentially damping form comparable to the Schwinger pair production rate. We analyze the foundation of the DDP method using a modern complex technique inspired by the Lefschetz-thimble method. We derive an alternative and more adaptive formula that is useful even when the DDP method is inapplicable. As a benchmark, we study the modified Landau–Zener model and compare results from the DDP and our methods. We then revisit a derivation of the Schwinger Mechanism of particle production under electric fields using the DDP and our methods. We find that the DDP method gets worse for the Sauter type of short-lived electric pulse, while our method is still a reasonable approximation. We also study the Dynamically Assisted Schwinger Mechanism in two methods.
Venue: via Zoom
Event Official Language: English
-
Seminar
Nambu-Goldstone fermion in a Bose-Fermi mixture with an explicitly broken supersymmetry
August 7 (Fri) at 13:00 - 14:30, 2020
Hiroyuki Tajima (PhD, Department of Natural Science, Kochi University)
Supersymmetry, which is a symmetry associated with interchange between bosons and fermions, is one of the most important symmetries in high-energy physics but its evidence has never been observed yet. Apart from whether supersymmetric partners such as squark exist or not in our world, it is an interesting problem to explore the consequences of the supersymmetry in an ultracold atomic gas. In this study, we address the Nambu-Goldstone mode called Goldstino associated with the spontaneous supersymmetry breaking in a Bose-Fermi mixture. While the explicit supersymmetry breaking is unavoidable even in cold atomic systems, the energy gap in Goldstino spectra can be measured in such atomic systems. By comparing the energy gaps obtained from the Gell-Mann-Oakes-Renner relation and the random phase approximation, we elucidate how the Goldstino acquires the energy gap due to the explicit breakings. We also show effects of Goldstino pole on the fermionic single-particle spectral functions, which can be measured in the recent experiments.
Venue: via Zoom
Event Official Language: English
-
Seminar
Complex Langevin study of an attractively interacting two-component Fermi gas in 1D with population imbalance
July 10 (Fri) at 13:30 - 14:30, 2020
Shoichiro Tsutsui (Special Postdoctoral Researcher, Quantum Hadron Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science (RNC))
We investigate an attractively interacting two-component Fermi gas in 1D described by the Gaudin-Yang model with population imbalance. While the Gaudin-Yang model is known as a solvable model based on the thermodynamic Bethe ansatz, the binding energy and mass of poralon at finite temperature and moderate impurity density are still unknown. Moreover, in such a system, quantum Monte Carlo simulation suffers from the sign problem because the population imbalance makes the fermion determinant non-positive definite. In this study, we apply complex Langevin method, a holomorphic extension of the stochastic quantization to overcome the sign problem. We first confirm our numerical results satisfy a criteria for correct convergence [1], and present how the polaron energy depends on temperature and density of impurity. We also compare our results with a recent study based on a diagrammatic approach [2].
Venue: via Zoom
Event Official Language: English
-
Field theoretical approach to relativistic hydrodynamics
June 12 (Fri) at 13:00 - 14:30, 2020
Masaru Hongo (Visiting Scientist, iTHEMS / Postdoctoral Research Associate, Physics Department, The University of Illinois at Chicago (UIC), USA)
Hydrodynamics is a low-energy effective theory of a conserved charge density, which describes a long-distance and long-time behavior of many-body systems. It is applicable not only to a non-relativistic weakly-interacting dilute gas but also a relativistic strongly-interacting dense liquid like a quark-gluon plasma. The main purpose of this seminar is to explain how we can derive the hydrodynamic equation from the underlying field-theoretical description of systems [1-3]. Our derivation is based on the recent development of non-equilibrium statistical mechanics, and we show that the procedure to derive hydrodynamic equations is similar to the so-called renormalized/optimized perturbation theory. Also, to describe transport phenomena in local thermal equilibrium, we give a path-integral formula for a thermodynamic functional, which results in the emergence of thermally induced curved spacetime [2]. These results enable us to derive hydrodynamic equation based on quantum field theories.
Event Official Language: English
87 events
Events
Categories
series
- iTHEMS Colloquium
- MACS Colloquium
- iTHEMS Seminar
- iTHEMS Math Seminar
- DMWG Seminar
- iTHEMS Biology Seminar
- iTHEMS Theoretical Physics Seminar
- Information Theory SG Seminar
- Quantum Matter Seminar
- ABBL-iTHEMS Joint Astro Seminar
- Math-Phys Seminar
- Quantum Gravity Gatherings
- RIKEN Quantum Seminar
- Quantum Computation SG Seminar
- Asymptotics in Astrophysics SG Seminar
- GW-EOS WG Seminar
- DEEP-IN Seminar
- NEW WG Seminar
- Lab-Theory Standing Talks
- QFT-core Seminar
- STAMP Seminar
- QuCoIn Seminar
- Number Theory Seminar
- Academic-Industrial Innovation Lecture
- Berkeley-iTHEMS Seminar
- iTHEMS-RNC Meson Science Lab. Joint Seminar
- RIKEN Quantum Lecture
- Theory of Operator Algebras
- iTHEMS Intensive Course-Evolution of Cooperation
- Introduction to Public-Key Cryptography
- Knot Theory
- iTHES Theoretical Science Colloquium
- SUURI-COOL Seminar
- iTHES Seminar