iTHEMS Theoretical Physics Seminar
85 events
-
Seminar
Maximum Force Conjecture and Black Hole Thermodynamics
June 30 (Fri) at 14:00 - 15:30, 2023
Yen Chin Ong (Professor, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, China)
I review the current controversial status of the so-called "maximum force conjecture" in general relativity, whose validity has recently been debated. Then I will discuss how maximum force conjecture can nevertheless be relevant for black hole thermodynamics.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Seminar
The classical equations of motion of quantised gauge theories
June 23 (Fri) at 13:30 - 15:00, 2023
Tom Melia (Associate Professor, Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), The University of Tokyo)
The Einstein and Maxwell equations are the jewels in the crown of classical physics. But classical physics is only an approximation to nature, arising as a limit of the underlying quantum mechanical description. And in the case of both general relativity and electromagnetism, owing to their gauge theory nature, the full set of classical equations of motion are not guaranteed to follow from the quantum theory. The time-time and time-space components of the Einstein equations in GR and Gauss’ law in EM are enforced ‘by hand' in the quantisation procedure—a choice so as to make the classical-like states behave as per our classical belief. But what if our universe was actually described by another classical-like state? For GR, the resulting modification of the Einstein equations can be packaged as the inclusion of an auxiliary energy-momentum tensor describing a ’shadow’ matter that adds no additional degrees of freedom to the theory. The homogeneous and isotropic background piece of this auxiliary matter contributes to expansion of the universe identical to cold dark matter, and the inhomogeneous components source curvature perturbations that grow linearly at linear order.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Seminar
A Spin on Wave Dark Matter
June 15 (Thu) at 16:00 - 17:30, 2023
Mustafa Amin (Associate Professor, Department of Physics and Astronomy, Rice University, USA)
What can we learn about the intrinsic spin of ultralight dark matter field from astrophysical observations? That is, is dark matter is a scalar (spin 0), (spin 1) or tensor (spin 2) field? Using analytic calculations and 3+1 dimensional simulations, I will argue that the imprint of spin can be seen via (i) the initial density power spectrum, (ii) interference patterns in the density field inside dark matter halos, and through (iii) (polarized) solitons with macroscopic intrinsic spin. Based on features in the initial power spectrum, I will provide a bound on the dark matter mass > 10^(-18) eV for post-inflationary production. With increasing intrinsic spin, interference patterns in halos are reduced (and the inner shapes of halos modified) — which can be probed by lensing and dynamical heating of stars. Finally, after introducing polarized solitons, I will show that the time-scale of emergence of solitons (within halos) increases with increasing spin, and briefly discuss electromagnetic and gravitational wave signatures from such polarized solitons. Time-permitting, I will also mention connections to “spinor" Bose-Einstein condensates in the laboratory.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Seminar
Termination of Superradiance from a Binary Companion
June 6 (Tue) at 13:30 - 15:00, 2023
Huiyu Zhu (Ph.D. Student, Department of Physics, Hong Kong University of Science and Technology, Hong Kong)
We study the impact of a binary companion on black hole superradiance at orbital frequencies away from the gravitational-collider-physics (GCP) resonance bands. A superradiant state can couple to a strongly absorptive state via the tidal perturbation of the companion, thereby acquiring a suppressed superradiance rate. Below a critical binary separation, this superradiance rate becomes negative, and the boson cloud gets absorbed by the black hole. This critical binary separation leads to tight constraints on GCP. Especially, a companion with mass ratio q > 10^−3 invalidates all GCP fine structure transitions, as well as almost all Bohr transitions except those from the |211> state. Meanwhile, the backreaction on the companion manifests itself as a torque acting on the binary, producing floating/sinking orbits that can be verified via pulsar timing. In addition, the possible termination of cloud growth may help to alleviate the current bounds on the ultralight boson mass from various null detections.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Spectral correlations and scrambling dynamics in Sachdev-Ye-Kitaev type models
May 30 (Tue) at 13:30 - 15:00, 2023
Masaki Tezuka (Assistant Professor, Division of Physics and Astronomy, Graduate School of Science, Kyoto University)
Note: Due to unexpected trouble, we have made the decision to postpone the seminar scheduled for February 21 to May 30. Sorry for the trouble. Abstract: The Sachdev-Ye-Kitaev (SYK) model, proposed in 2015, is a quantum mechanical model of N Majorana or complex fermions with all-to-all random four-body interactions. The model has attracted significant attention over the years due to its features such as the existence of the large-N solution with maximally chaotic behavior at low temperatures and holographic correspondence to low-dimensional gravity. The sparse version of the SYK model reproduces essential features of the original model for reduced numbers of disorder parameters. We recently proposed [1] a further simplification, where we set the nonzero couplings to be +1 or -1 rather than sampling from a continuous distribution such as Gaussian. This binary-coupling model exhibits strong correlations in the spectrum, as observed in the spectral form factor, more efficiently in terms of the number of nonzero terms than in the Gaussian distribution case. We also discuss the scrambling dynamics with the binary-coupling sparse SYK model, comparing the model with the original model as well as the SYK model with random two-body terms [2], where the localization of the many-body eigenstates in the Fock space has been quantitatively studied [3,4].
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Statistical methods to probe binary stellar evolution with ZTF and LISA data
May 23 (Tue) at 13:30 - 15:00, 2023
Lucy McNeill (JSPS Fellow, Department of Physics, Division of Physics and Astronomy, Graduate School of Science, Kyoto University)
The Laser-Interferometer-Space-Antenna (LISA) will be capable of detecting all galactic double neutron star binaries (DNSBs) with orbital periods < 20 minutes, as well as 10-100’s of thousands of double white dwarf binaries. I will present our method to use LISA detections to constrain the formation frequencies of galactic DNSBs, which are determined by supernova physics and various mass exchange processes. Next, I summarise the key differences in DNSBs and white dwarf binaries (WDBs) in the context of future LISA observations, as well as the current Zwicky Transient Facility (ZTF) for the latter. Then we will examine the current catalogue of short period white dwarf binaries (orbital periods < 1 hour) detected by ZTF so far, including the first ever measurement (Burdge et al. 2023) of the temperature of a mass transferring white dwarf in a binary. Here I will make the case that taken together, these observations are in conflict with the theoretical picture commonly used in Galactic modelling- specifically related to cooling and mass transfer leading to WDB mergers. However, heating from tidal interactions may explain and mediate this inconsistency. Finally I will put these results into context regarding preparing for the unprecedented data set of galactic white dwarf binaries from LISA in the 2030s.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Seminar
Towards S-matrix theory of unstable particles
March 15 (Wed) at 13:30 - 15:00, 2023
Katsuki Aoki (Research Assistant Professor, Yukawa Institute for Theoretical Physics, Kyoto University)
The S-matrix is one of the central objects in quantum field theory and gains renewed interest recently to understand the possible structures of low-energy effective field theories and quantum gravity. However, most of the particles have finite decay widths and thus do not appear in asymptotic states. Therefore, the standard S-matrix arguments may not be directly applied to scatterings of such unstable particles and we need to formulate “the S-matrix theory of unstable particles” to properly understand the availability of the S-matrix arguments in realistic systems. In this talk, I will talk about the first steps towards this goal. In particular, I will discuss non-perturbative consequences of unitarity in a scattering amplitude of unstable particles and its analytic properties.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
-
Seminar
Boltzmann or Bogoliubov? A Case of Gravitational Particle Production
February 9 (Thu) at 13:30 - 15:00, 2023
Kunio Kaneta (Lecturer, Graduate School of Science, Tokyo Woman's Christian University)
Despite its weakness, gravity is the primordial source of particle production in the early Universe. All the particles, including dark matter, can inevitably be created after the end of inflation through gravity. To study this production channel, two different approaches have commonly been considered, one of which is based on the Boltzmann equation, and the other is based on the Bogoliubov transformation. The former approach has widely been used in phenomenological studies of dark matter, while the latter has been developed to describe particle production in curved spacetime. I will discuss when these two approaches are equivalent and when they are not by considering the pure gravitational production of a scalar particle.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
-
Seminar
Tetra-neutron system studied by RI-beam experiments
January 17 (Tue) at 13:30 - 15:00, 2023
Susumu Shimoura (Research Scientist, Spin isospin Laboratory, RIKEN Cluster for Pioneering Research (CPR))
Multi-neutron systems have attracted a long-standing attention in nuclear physics. In several decades, experimental attempts have been made with a particular focus on the tetra-neutron system. Among them, the two different experiments, the double-charge exchange reaction on 4He and the alpha-particle knockout reaction from the 8He, show a sharp peak just above the threshold in the four-neutron spectra, which could be a signature of a "resonant state", separate from a broad bump structure at higher excitation energy regions. Both the experiments have been realized by using the 8He beam above 150 A MeV at the RIKEN RI Beam Factory. Details of the two experiments including basic idea, experimental techniques, and analysis are presented as well as a historical review of previous experimental attempts. Emphasis is made for the experimental conditions for populating a kinematically isolated tetra-neutron system with very small momentum transfer. The spectral shape is discussed by means of reaction processes and correlations in the final tetra-neutron system with several recent theoretical studies.
Venue: Common Room #246-248 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Chiral effects on lepton transport in core-collapse supernovae
December 13 (Tue) at 13:30 - 15:00, 2022
Di-Lun Yang (Assistant Research Fellow, Institute of Physics, Academia Sinica, Taiwan)
Dynamics of leptons such as electrons and neutrinos play an important role in the evolution of core-collapse supernovae (CCSN). Nevertheless, chirality as one of fundamental microscopic properties that could affect lepton transport, through e.g. weak interaction, has been mostly overlooked. In this talk, I will discuss how chiral effects such as the renowned chiral magnetic effect (CME), generating an electric charge current along magnetic fields with chirality imbalance, could result in the unstable modes of magnetic fields and inverse cascade, which potentially influence the matter evolution in CCSN and pulsar kicks. I will also show how an effective CME could be realized via the backreaction from neutrino radiation even in the absence of an axial charge characterizing an unequal number of right- and left-handed electrons.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
-
Seminar
Cosmic Birefringence: how our universe violates left-right symmetry
December 6 (Tue) at 13:30 - 15:00, 2022
Tomohiro Fujita (Assistant Professor, Waseda Institute for Advanced Study, Waseda University)
Our universe is lefty: recent observations imply that the polarization plane of light that has traveled through cosmic space for 13.8 billion years rotates about 0.3 degrees to the left. A similar phenomenon is known to occur in materials such as crystals, and is called birefringence. But why does birefringence occur even in the outer space, which is supposed to be a vacuum? Dark energy, the unknown energy that fills the universe, may be responsible for it. In this seminar, I will review observations and theories of cosmic birefringence and discuss future prospects.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
-
Seminar
Tetra and pentaquarks with multi-flavor contents
November 22 (Tue) at 13:30 - 15:00, 2022
Atsushi Hosaka (Professor, Research Center for Nuclear Physics, Osaka University)
Recent hadron experiments keep providing evidences of exotic hadrons with multi-quark components. These multiquarks are self-arranged into various configurations such as diquarks, hadronic molecules and so on. In this seminar, we discuss possible structures of tetra and pentaquarks with multi-flavor contents including recently observed T_cc, Pc and P_cs. Based on our recent studies in the quark model and hadron models, we discuss where and how different quark structures emerge.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
-
Merger and post-merger of binary neutron stars with a quark-hadron crossover equation of state
November 15 (Tue) at 15:00 - 17:01, 2022
Yongjia Huang (Ph.D. Student, University of Science and Technology of China, China)
The state of the ultra-dense matter remains one of the long-standing open questions. Neutron star (NS), as it cools down the eons ahead after the birth in the supernova explosion, provides an astrophysical laboratory to investigate the dense, strongly interacting nuclear matter at zero temperature. On the other hand, the most intense gravitational wave(GW) radiation is produced in regions of the strong gravitational field by coherent movements of masses with large compactness. Therefore, GW from binary neutron star(BNS) merger naturally contains the information from the ultra-dense matter. In this talk, I will introduce our recent work, "Merger and post-merger of binary neutron stars with a quark-hadron crossover equation of state ."Quark-hadron crossover(QHC) is one way of hadron-quark transition, which generally predicts a peak in sound speed vs. density, and so releases more pressure during the hadron-quark transition. I will first briefly summarize the features of QHC EOS and the BNS merger. I will then focus on how information on the hadron-quark transition shows in the GW and its spectrum during the BNS merger.
Venue: via Zoom
Event Official Language: English
-
Seminar
Expanding Edges of Quantum Hall Systems in a Cosmology Language - Hawking Radiation from de Sitter Horizon in Edge Modes
November 11 (Fri) at 16:00 - 17:30, 2022
Masahiro Hotta (Assistant Professor, Department of Physics, Graduate School of Science, Tohoku University)
Expanding edge experiments are promising to open new physics windows of quantum Hall systems. In a static edge, the edge excitation, which is described by free fields decoupled with the bulk dynamics, is gapless, and the dynamics preserve conformal symmetry. When the edge expands, such properties need not be preserved. We formulate a quantum field theory in 1+1 dimensional curved spacetimes to analyze the edge dynamics. We propose methods to address the following questions using edge waveforms from the expanding region: Does the conformal symmetry survive? Is the nonlinear interaction of the edge excitations induced by edge expansion? Do the edge excitations interact with the bulk excitations? We additionally show that the expanding edges can be regarded as expanding universe simulators of two-dimensional dilaton-gravity models, including the Jackiw-Teitelboim gravity model. As an application, we point out that our theoretical setup might simulate emission of analog Hawking radiation with the Gibbons-Hawking temperature from the future de Sitter horizon formed in the expanding edge region.
Venue: #345-347, 3F, Main Research Building (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Tensor renormalization group approach to quantum fields on a lattice
November 8 (Tue) at 13:30 - 15:00, 2022
Shinichiro Akiyama (Specially Appointed Assistant Professor, Quantum Software Project, The University of Tokyo)
Tensor renormalization group (TRG) approach is a variant of the real-space renormalization group to evaluate the path integral defined on the thermodynamic lattice, without resorting to any probabilistic interpretation for the given Boltzmann weight. Moreover, since the TRG can directly deal with the Grassmann variables, this approach can be formulated in the same manner for the systems with bosons, fermions, or both. These advantages of the TRG approach have been confirmed by the earlier studies of various lattice theories, which suggest that the TRG enables us to investigate the parameter regimes where it is difficult to access with the standard stochastic numerical methods, such as the Monte Carlo simulation. In this talk, explaining our recent applications of the TRG approach to several lattice models, we demonstrate the efficiency of the TRG as a tool to investigate lattice theories particularly in higher dimensions and future perspective.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
-
Seminar
Ultra-Light Axion Dark Matter: Bose-Einstein condensates and superfluids in the sky
October 11 (Tue) at 13:30 - 15:00, 2022
Elisa G.M. Ferreira (Project Assistant Professor, Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), The University of Tokyo)
The nature of dark matter (DM) is one of the biggest mysteries in cosmology. There are many different models to explain the nature of this elusive component. In this talk I will present a class of dark matter models: ultra-light dark matter (ULDM) or ultra-light axions (ULA). I will show the different models present in the literature and classify them according to the way they behave on small scales. One of the most interesting features of this class of DM models is that it might condense in the interior of the halos of galaxies forming a Bose-Einstein condensate (BEC) or superfluid. This interesting quantum phenomena on macroscopic scales, and the wave nature of ULDM leads to different and interesting astrophysical consequences that can be probed on small scales. I will quickly review first the fuzzy dark matter model, one of the most well studied ULA models, where I will present its description, predictions and current bounds. Then I will introduce the DM superfluid model, where, upon condensation in the interior of galaxies, DM dynamics represents that of MOdified Newtonian Dynamics (MOND) on galactic scales. This behaviour can address some of the curiosities of the behaviour of DM on small scales. I plan to show the theoretical description of this model and its interesting phenomenology.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
-
Seminar
Test of the Cosmological principle by observing the primordial gravitational waves
July 27 (Wed) at 13:30 - 15:00, 2022
Yuko Urakawa (Associate Professor, High Energy Accelerator Research Organization (KEK))
In this talk, using the generalized deltaN formalism, which dramatically facilitates a computation of the primordial density perturbation and the primordial GWs (PGWs), we address a violation of the Cosmological principle, namely a violation of the global isotropy in the Universe. It’s turned out that measuring the PGWs provides a powerful tool to explore a violation of the global isotropy. If time permits, I will also discuss some prospects on LiteBIRD.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
-
Seminar
Gradient flow exact renormalization group 2
July 6 (Wed) at 13:30 - 17:00, 2022
Hiroshi Suzuki (Professor, Graduate School of Science, Kyushu University)
Wilson’s exact renormalization group (ERG), which tells how a system changes under the scale transformation, provides a fundamental framework to define quantum field theory even beyond the perturbation theory. It has however been known that it is difficult to preserve a manifest gauge symmetry in ERG because of the usage of the momentum cutoff in ERG. Here, we propose a possible modification of ERG, the gradient flow exact renormalization (GFERG), which preserves a manifest gauge symmetry being based on a gauge-covariant diffusion equation. I explain the basic idea and properties of GFERG. If time permits, I want to present a possible application of GFERG to the consideration of the axial anomaly.
Venue: via Zoom
Event Official Language: English
-
Seminar
Gradient flow exact renormalization group 1
July 5 (Tue) at 13:30 - 17:00, 2022
Hiroshi Suzuki (Professor, Graduate School of Science, Kyushu University)
Wilson’s exact renormalization group (ERG), which tells how a system changes under the scale transformation, provides a fundamental framework to define quantum field theory even beyond the perturbation theory. It has however been known that it is difficult to preserve a manifest gauge symmetry in ERG because of the usage of the momentum cutoff in ERG. Here, we propose a possible modification of ERG, the gradient flow exact renormalization (GFERG), which preserves a manifest gauge symmetry being based on a gauge-covariant diffusion equation. I explain the basic idea and properties of GFERG. If time permits, I want to present a possible application of GFERG to the consideration of the axial anomaly.
Venue: via Zoom
Event Official Language: English
-
Seminar
Dress code for infrared safe S-matrix in QED
June 22 (Wed) at 13:30 - 15:00, 2022
Sotaro Sugishita (Designated Assistant Professor, Institute for Advanced Research (IAR), Nagoya University)
We consider the infrared (IR) aspects of the gauge invariant S-matrix in QED. I will review the problem of IR divergences in QED, and introduce the dressed state formalism to obtain IR-safe S-matrix elements. I will show a condition for dressed states to obtain IR-safe S-matrix elements, and explain that this condition can be interpreted as the memory effect and is related to asymptotic symmetry. I also explain that IR divergences are necessary to prohibit the violation of asymptotic symmetry. We also argue that the difference between dressed and undressed states can be observed, even if we are able to observe an inclusive cross-section summing over soft photons.
Venue: Hybrid Format (Common Room 246-248 and Zoom)
Event Official Language: English
85 events
Events
Categories
series
- iTHEMS Colloquium
- MACS Colloquium
- iTHEMS Seminar
- iTHEMS Math Seminar
- DMWG Seminar
- iTHEMS Biology Seminar
- iTHEMS Theoretical Physics Seminar
- Information Theory SG Seminar
- Quantum Matter Seminar
- ABBL-iTHEMS Joint Astro Seminar
- Math-Phys Seminar
- Quantum Gravity Gatherings
- RIKEN Quantum Seminar
- Quantum Computation SG Seminar
- Asymptotics in Astrophysics SG Seminar
- GW-EOS WG Seminar
- DEEP-IN Seminar
- NEW WG Seminar
- Lab-Theory Standing Talks
- QFT-core Seminar
- STAMP Seminar
- QuCoIn Seminar
- Number Theory Seminar
- Academic-Industrial Innovation Lecture
- Berkeley-iTHEMS Seminar
- iTHEMS-RNC Meson Science Lab. Joint Seminar
- RIKEN Quantum Lecture
- Theory of Operator Algebras
- iTHEMS Intensive Course-Evolution of Cooperation
- Introduction to Public-Key Cryptography
- Knot Theory
- iTHES Theoretical Science Colloquium
- SUURI-COOL Seminar
- iTHES Seminar