August 7 (Mon) at 13:30 - 15:00, 2023 (JST)
  • Motoko Fujiwara (Postdoctoral Researcher, Theoretical Particle Physics Group, Technical University of Munich, Germany)
Tomoya Naito

Old isolated neutron stars have been gathering attention as targets to probe Dark Matter (DM) through temperature observations. DM will anomalously heat neutron stars through its gravitational capture and annihilation process, which predicts surface temperature as T_s ~ (1 − 3) × 10^3 K for t > 10^6 years. We may put constraints on DM-nucleon scattering cross section by finding even colder neutron stars.
This story, however, assumed that there is no relevant heating source for old neutron stars. In this talk, we discuss the creep motion of vortex lines in the neutron superfluid of the inner crust as the heating mechanism. This creep mechanism is inherent in the structure of neutron stars. The heating luminosity is proportional to the time derivative of the angular velocity of the pulsar rotation, and the proportional constant J has an approximately universal value for each neutron star. If this vortex creep heating is quantitatively relevant against DM heating, this mechanism may cause a serious background to probe DM.
The J parameter can be determined from the temperature observation of old neutron stars because the heating luminosity is balanced with the photon emission in the late time. We study the latest data of neutron star temperature observation and find that these data indeed give similar values of J, in favor of the assumption that these neutron stars are heated by the frictional motion of vortex lines. Besides, these values turn out to be consistent with the theoretical calculations of the vortex-nuclear interaction. Integarting all the results, we evaluate the vortex creep heating and conclude its significance against DM heating.

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event