Toward simulating Superstring/Mtheory on a Quantum Computer
 Date
 October 23 at 17:00  18:00, 2020 (JST)
 Speaker

 Dr. Masanori Hanada (Department of Mathematics, University of Surrey, UK)
 Venue
 via Zoom
 Language
 English
We present a framework for simulating superstring/Mtheory on a quantum computer, based on holographic duality. Because holographicduality maps superstring/Mtheory to quantum field theories (QFTs), we can study superstring/Mtheory if we can put such QFTs on a quantum computer  but it still looks like a complicated problem, if we use a usual lattice regularization. Here we propose an alternative approach, which turns out to be rather simple: we map the QFT problems to matrix models, especially the supersymmetric matrix models such as the BerensteinMaldacenaNastase (BMN) matrix model. Supersymmetric matrix models have natural applications to superstring/Mtheory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the BerensteinMaldacenaNastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/Mtheory can be realized on a quantum device. It is straightforward to put the matrix models on a quantum computer, because they are just quantum mechanics of matrices, and the construction of QFTs is mapped to the preparation of certain states. We show the procedures are conceptually rather simple and efficient quantum algorithms can be applied. In addition, as a (kind of) byproduct, we provide a new formulation of pure YangMills on quantum computer.
If you would like to participate, please register using the form below.