149 events in 2024
-
Seminar
Brane field theory with higher-form symmetry
March 12 (Tue) at 14:00 - 15:30, 2024
Kiyoharu Kawana (Research Fellow, Korea Institute for Advanced Study (KIAS), Republic of Korea)
We propose field theory for branes with higher-form symmetry as a generalization of ordinary Landau theory. The field \psi[C_p^{}] becomes a functional of p-dimensional closed brane Cp embedded in a spacetime. As a natural generalization of ordinary field theory, we call this theory brane field theory. In order to construct an action that is invariant under higher-form transformation, we first generalize the concept of “derivative” for higher-dimensional objects. Then, we discuss various fundamental properties of the brane field based on the higher-form invariant action. It is shown that the classical solution exhibits the area law in the unbroken phase of U(1) p-form symmetry, while it indicates a constant behavior in the broken phase for the large volume limit of Cp. In the latter case, the low-energy effective theory is described by the p-form Maxwell theory. If time permits, we also discuss brane-field theories with a discrete higher-form symmetry and show that the low-energy effective theory becomes a BF-type topological field theory, resulting in topological order.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Condensed Matter Physics of QCD 2024
March 11 (Mon) - 22 (Fri), 2024
Gordon Baym (Professor Emeritus, University of Illinois, USA)
Muneto Nitta (Professor, Keio University)
Mark Alford (Professor, Washington University in St. Louis, USA)
Sanjay Reddy (Professor, University of Washington, USA)
Dam Thanh Son (Professor, The University of Chicago, USA)
Mikhail Stephanov (Professor, The University of Illinois at Chicago (UIC), USA)
Kenji Fukushima (Professor, Department of Physics, Graduate School of Science, The University of Tokyo)
Naoki Yamamoto (Associate Professor, Keio University)
Koutarou Kyutoku (Associate Professor, Graduate School of Science, Kyoto University)
Yui Hayashi (Postdoctoral researcher, Yukawa Institute for Theoretical Physics, Kyoto University)
Kentaro Nishimura (Postdoctoral researcher, Hiroshima University)
Toru Kojo (Associate professor, Tohoku University)
Masakiyo Kitazawa (Lecturer, Yukawa Institute for Theoretical Physics, Kyoto University)QCD at finite temperature and density is one of the most challenging problems in modern physics, which plays a crucial role to understand the origin and coevolution of the universe and matter. On the one hand, the relativistic heavy-ion collision experiments in the past decades have opened a new and exciting field to explore physical properties of such a QCD matter at high-tempearture. On the other hand, recent astrophysical observations of compact stars (in particular, events involving neutron stars) is becoming another exciting tool to unveil properties of the dense QCD matter. This molecule-type workshop is aimed at bringing together theorists working on QCD at finite-temperature and density, with a particular focus on dense quark-nuclear matter relevant to neutron star physics. We will mainly cover macroscopic properties of the finite-density QCD matter such as the Lee-Yang edge singularity for a QCD critical point, the renewed Fermi liquid theory for quark-nuclear matter, nuclear superfluidity, color superconductivity, quark-hadron continuity, quantum vortex, and transport phenomena including the weak-intearction processes.
Venue: via Zoom / Yukawa Institute for Theoretical Physics, Kyoto University
Event Official Language: English
-
Macroscopic neutrinoless double beta decay: long range quantum coherence
March 6 (Wed) at 15:30 - 17:30, 2024
Gordon Baym (Professor Emeritus, University of Illinois, USA)
This talk will introduce the concept of ``macroscopic neutrinoless double beta decay" (MDBD) for Majorana neutrinos. In this process an antineutrino produced by a nucleus undergoing beta decay, $X\to Y + e^- + \bar \nu_e$, is absorbed as a neutrino by another identical $X$ nucleus via the inverse beta decay reaction, $\nu_e + X \to e^-+Y$. The distinct signature of MDBD is that the total kinetic energy of the two electrons equals twice the end-point energy of single beta decay. The amplitude for MDBD, a coherent sum over the contribution of different mass states of the intermediate neutrinos, reflects quantum coherence over macroscopic distances, and is a new macroscopic quantum effect. We discuss the similarities and differences between the MDBD and conventional neutrinoless double beta decay, as well as give estimates of the rates of MDBD and backgrounds.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Do plants have bones? Silica phytoliths and their role and fate in the development of terrestrial plants and human civilizations
March 1 (Fri) at 14:00 - 15:15, 2024
Mikhail Blinnikov (Professor, St. Cloud State University, USA)
Silicon is the second most common element in the Earth’s crust. Some families of higher plants evolved mechanisms for soluble silica to be carried by xylem from groundwater and deposited as plant opal in or around plant cells as phytoliths thought to play a role in the structural support and defense against herbivores. While known since the early 19th century, phytoliths remain an intriguing class of microfossils whose formation and role in plants and their preservation in soils and sediments are a subject for a lot of active research. I outline some emerging themes in phytolith analysis including phytoliths’ role in global biogeochemical cycles, plant-herbivore interactions, and their tracing of evolution of cultural plants, especially cereals such as rice (Oryza), wild rice (Zizania), maize (Zea), wheat (Triticum) and millet (Panicum), all relevant to global archaeology. Some emerging research on phytoliths connects their changes in shapes to plant taxonomy of some families such as grasses and opens up avenues for further investigation of their active construction in the cells of some taxa by yet undiscovered genetically mediated mechanisms. New image analysis techniques and some advanced microscopy methods will allow us to further the field of phytolith study using deep machine learning algorithms and true 3D analysis of their shapes, something where contribution from other branches of science are most welcome.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Workshop
RIKEN-Nara Women's University Joint Diversity Promotion Workshop 2024
February 29 (Thu) - March 1 (Fri), 2024
The RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) and the Faculty of Science at Nara Women's University are promoting a project to foster female researchers under the auspices of the RIKEN Diversity Promotion Office. As part of the program, 23 undergraduate and graduate students from Nara Women's University will visit several laboratories on the RIKEN Wako campus to ask questions about their research and hold workshops/presentations with iTHEMS researchers. Organizers: RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program Faculty of Science, Nara Women's University Program: Thursday, February 29 13:30-14:00 Opening remarks by Tetsuo Hatsuda (C01, Main Research Bldg. room 246-248) 14:00-15:30 Atomic, Molecular & Optical Physics Laboratory (CPR) (C32, Laser Bldg. 2F) 15:30-17:00 Neural Circuit of Multisensory Integration RIKEN Hakubi Research Team (CBS) (C56, Brain Science Ikenohata Bldg. 3F) 17:00-18:30 RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) (C01, Main Research Bldg. 3F) 18:30-21:00 Presentations by Nara Women's University Students (C01, Main Research Bldg. 3F) Friday, March 1 9:00-10:30 Nishina Center RIBF Facility (RNC) (E01, Nishina RIBF Bldg.) 10:30-12:00 Cellular Informatics Laboratory (CPR) (S01, Biology Science Bldg.3F) 12:00-13:00 Lunch (C61, Welfare and Conference Bldg.) 13:00 Closing
Venue: via Zoom
-
Seminar
Stochastic tunneling in de Sitter spacetime
February 28 (Wed) at 16:00 - 17:30, 2024
Taiga Miyachi (Ph.D. Student, Institute of Cosmophysics, Department of Physics, Graduate School of Science, Kobe University)
The formulation of tunneling in real time formalism is discussed. In the case of de Sitter spacetime, there is a method called the stochastic approach, which is known to reproduce the tunneling predicted by Hawking and Moss in the imaginary time formalism. In the case of accelerated expansion of space, the short-wavelength modes are stretched and transformed into long-wavelength modes. In the stochastic approach, such UV-IR transition is incorporated as quantum noise, and the dynamics of the long-wavelength modes are described by stochastic differential equations. In this talk, we construct a Schwinger-Keldysh path integral that reproduces this stochastic differential equation and reformulate the tunneling probability. We also reproduce the Hawking-Moss tunneling probabilities by using the saddle point approximation.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Basic experimental considerations for analyzing gene expression
February 28 (Wed) at 13:00 - 14:00, 2024
Hirotaka Toh (JSPS PD Researcher, RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR))
Methods such as RNA-sequencing and ribosome profiling are indispensable tools for the comprehensive elucidation of the mechanisms underlying gene expression. A fundamental aspect that requires meticulous attention in the execution of these experiment is the extraction of intact RNA and Ribosomes. The integrity and purity of the extracted RNA is critical to ensure the accuracy and reliability of the sequencing data. In this seminar, I will introduce the basic but key points of the extraction process.
Venue: 3rd floor public space, Main Research Building
Event Official Language: English
-
Using a trapped ion quantum computer for hamiltonian simulations
February 28 (Wed) at 10:30 - 12:00, 2024
Enrico Rinaldi (Senior Research Scientist, Quantum Machine Learning and Algorithms, Quantinuum K.K.)
Trapped ion quantum computers, like the H-series quantum hardware by Quantinuum, robustly encode quantum information in long lived and precise qubits. However, utilizing the hardware efficiently requires a full-stack workflow from software libraries to hardware compilers. In this talk we introduce the relevant elements of this stack in the context of solving the quantum dynamics of a spin system on H-series hardware: we start from the definition of the Hamiltonian operator in the qubit Hilbert space using the open-source pytket python library and we define the quantum circuits in measurements to run, on a simulator first and on hardware later.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Plant hackers: galling insects extend their phenotypes on the trees by novel plant organogenesis
February 27 (Tue) at 16:00 - 17:00, 2024
Xin Tong (Special Postdoctoral Researcher, Cell Function Research Team, RIKEN Center for Sustainable Resource Science (CSRS))
When it comes to plant-insect interactions, insects are generally seen as pests like caterpillars eating vegetables or fruits. However, one group of insects, the galling insects can induce de novo organogenesis on the host plants which are often woody plants. Each galling insect species ‘designs’ its own gall as the extended phenotype which are so-called species-specific gall formation. Different from leaves and roots, galls represent unique plant organs swiftly formed in response to parasitic organisms, observed across diverse plant species. Yet, the precise mechanisms by which normal plant development is interrupted and redirected to form galls by galling organisms remain elusive. During the talk, I will share some discoveries and views related to aphid gall formation on the elm tree, which is the super host plant for more than 30 galling species, and further discussion about why an insect gall is not simple cell mass but well-organized structure, and how we could systematically understand insect gall formation.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
An Investment Banker’s Journey to the World of Physicists -Seeking the Truth in Economics and Finance
February 26 (Mon) at 15:30 - 17:00, 2024
Irena Vodenska (Professor, Boston University, USA)
I encountered many exciting opportunities to learn, grow intellectually, and teach during my educational, professional, and scientific journey. Life brings chances, and it is up to us to take or leave them. I took my chances, one of the fascinating ones being to embark on a scientific interdisciplinary research collaboration with physicists. My background is in economics and finance, and doing research with physicists has been fascinating from many different points of view, especially in light of being free from any ONE discipline, free to explore research possibilities to answer finance and economic questions based on a boundless horizon of possible solutions. I worked as an investment banker after my first graduate degree before returning to academia to continue chartering new pathways to research. During my work as a hedge fund manager and a NASDAQ market maker, I had an opportunity to witness firsthand, on the trading floor, the US market collapse sparked by the demise of the Long Term Capital Management in 1998 and later the European market plunge during the tragic events of the terrorist attack on New York City on September 11, 2001, when I lived and worked on Manhattan. Most world problems today are complex to solve with one discipline, as multidisciplinary THINKING is needed to cover various aspects of scientific inquiry. Experience is essential, translating real-world knowledge into academia even more so. I was fortunate to be in a position to build the bridge between investment banking and academia. Learning about the pioneer of Econophysics, Boston University Professor H. Eugene Stanley, was like discovering a gold mine for me. After an exciting investment banking experience in the 1990s and early 2000s, I left my investment banking job in New York City to join Professor Stanley’s research laboratory, a time I will cherish and remember as formative, enlightening, and transformative for the rest of my life. One may ask why physicists work with economists on financial economics problems. The answer is simple: physicists are naturally curious, inquisitive, and open to new ideas. Moreover, physicists and economists share the same language, the language of mathematics. The value of the achievement in econophysics research is the results and the empirical outcome based on data obtained with solid models grounded in natural and social science theory. It is not trivial to produce interdisciplinary research, but recognizing its necessity is already prominently featured in many universities’ strategic plans, including Boston University. Let me lay out several studies and results to give you a glimpse into the research I will discuss today. We analyze economic time series and panel data to understand their relationships and investigate whether some economic data could be informative of the behavior of others. We use a novel approach comprised of Complex Hilbert Principal Component Analysis (CHPCA), Rotational Random Shuffling (RRS), and Helmholtz-Hodge (HH) potential to unearth statistically significant co-movements and identify noteworthy economic and geopolitical events that might influence such co-movement dynamics. I will present results from four cases studied collaboratively with my international research collaborators over the last decade since 2013.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
A Selective Survey of Ideas, Tools and Results in Constructive Field Theory
February 26 (Mon) at 13:00 - 14:30, 2024
Christy Koji Kelly (Special Postdoctoral Researcher, iTHEMS)
In this talk we discuss some aspects of constructive field theory with an emphasis on analytical and probabilistic methods and results. In particular after an overview of some points in the history of constructive QFT we plan to discuss some early achievements in axiomatic QFT, some features of the theory of distributions and the basic structure of the Wightman reconstruction theorem. We also introduce the Osterwalder-Schrader axioms and overview the strategy for the construction of nontrivial measures describing path-integrals for interacting QFTs. Depending on time constraints we might also discuss probabilistic tools (weak convergence of measures, the Bochner-Minlos theorem etc), Gaussian measures, UV regularity of simple QFTs and the construction of (infinite volume) Euclidean P(phi)_2 measures. The plan is to discuss some of these topics in some detail after the end of the official seminar.
Venue: via Zoom / Seminar Room #359
Event Official Language: English
-
Workshop
Second Workshop on Fundamentals in Density Functional Theory (DFT2024)
February 20 (Tue) - 22 (Thu), 2024
The density functional theory (DFT) is one of the powerful methods to solve quantum many-body problems, which, in principle, gives the exact energy and density of the ground state. The accuracy of DFT is, in practice, determined by the accuracy of an energy density functional (EDF) since the exact EDF is still unknown. Currently, DFT has been used in many communities, including nuclear physics, quantum chemistry, and condensed matter physics, while the fundamental study of DFT, such as the first principle derivations of an accurate EDF and methods to calculate many observables from obtained densities and excited states. However, there has been little opportunity to have interdisciplinary communication. On December 2022, we had the first workshop on this series (DFT2022) at Yukawa Institute for Theoretical Physics, Kyoto University, and several interdisiplinary discussions and collaborationd were started. To share such progresses and extend collaborations, we organize the second workshop. In this workshop, the current status and issues of each discipline will be shared towards solving these problems by meeting together among researchers in mathematics, nuclear physics, quantum chemistry, and condensed matter physics. This workshop mainly comprises lectures/seminars on cutting-edge topics and discussion, while a half-day session composed of contributed talks is also planned. This workshop is partially supported by iTHEMS-phys Study Group. This workshop is a part of the RIKEN Symposium Series. The detailed information can be found in the workshop website.
Venue: 8F, Integrated Innovation Building (IIB) (Main Venue) / via Zoom
Event Official Language: English
-
Lecture
An introduction to the exact WKB analysis via the hypergeometric differential equation
February 19 (Mon) - 22 (Thu), 2024
Takashi Aoki (Professor Emeritus, Faculty of Science and Engineering, Kinki University)
This is an introductory course to the exact WKB analysis. Firstly we review some basic facts concerning formal power series and WKB solutions. Secondly we give an overview of the connection formulas for WKB solutions to ordinary differential equations of second order with a large parameter. Next, after recalling some classical theory for the Airy equation and the Gauss hypergeometric differential equation, we show how the exact WKB analysis is used for these equations and what are obtained. One of the main results to be presented in this course is the relation the between the classical hypergeometric function and the Borel resummed WKB solutions to the hypergeometric differential equation with a large parameter. Some applications and recent topics are also given. [Schedule (Tentative)] Day 1 10:00 - 11:30 Lecture 1 14:00 - 16:00 Lecture 2 Day 2 10:00 - 11:30 Lecture 3 14:00 - 16:00 Lecture 4 Day 3 10:00 - 11:30 Lecture 5 14:00 - 16:00 Lecture 6 Day 4 10:00 - 11:30 Lecture 7 14:00 - 16:00 Lecture 8
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Cellular-level left-right asymmetry, cell chirality, induces the chiral collective rotation of multicellular colony
February 15 (Thu) at 16:00 - 17:00, 2024
Tomoki Ishibashi (Special Postdoctoral Researcher, Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research (BDR))
Ryohei Nishizawa (Ph.D. Student, Graduate School of Frontier Biosciences, Osaka University)The left-right (LR) asymmetric morphology of organs is essential for the development and maintenance of their functions in various species. In recent years, it has become clear that the LR asymmetry of organs originates from cell chirality, the LR asymmetric nature at the cellular level [1]. However, it is unclear how the cell chirality generates the LR asymmetry at the multicellular level. Here we show a mechanism of LR asymmetry formation at the multicellular level based on cell chirality. We previously found that Caco-2 cells, a typical cultured epithelial cell line derived from human colon cancer, exhibit stereotypical and directional cell chirality; when Caco-2 cells are cultured as single cells, their nuclei and cytoplasm rotate in the clockwise direction at a rate of 50°/h [2]. Interestingly, when Caco-2 forms multicellular colonies, the colonies also undergo a collective clockwise rotation at 10º/h. We revealed that the actomyosin cytoskeleton is essential for the formation of the collective rotation [2]. We also found that Caco-2 cells formed lamellipodia and focal adhesions LR asymmetrically during the collective colony rotation, which may be responsible for the chiral collective motion. Interestingly, the disruption of microtubules reversed the direction of collective rotation. The LR asymmetric formation of lamellipodia and focal adhesions was also reversed by inhibition of microtubule polymerization. We will discuss the possible mechanism and the mathematical model where cell chirality induces multicellular chiral rotation depending on microtubules.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Chemical reaction network theory and the problem of reaction rate
February 8 (Thu) at 16:00 - 17:00, 2024
Tomoharu Suda (Postdoctoral Researcher, Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS))
A chemical system can be described at different levels. When we focus on the population of chemical species, it is convenient to consider the system as consisting of a number of chemical reactions, which assumes the structure of a (hyper)graph together with the species. The chemical reaction network theory studies chemical systems described in such a way. It aims to elucidate the dynamics of overall chemical composition in terms of the associated graph structure. Notably, it applies not only to chemical systems but also to more general systems as long as the mathematical structure is compatible. In the first part of this talk, we will review the basic concepts and results of the theory, which mainly concern the existence and stability of the equilibrium. From the viewpoint of chemical kinetics, it is interesting to consider the rate of the overall reaction, which may be obtained by the total balance of chemical species. The second part of the talk will be devoted to this topic. Formulation of the problem and some results will be presented. In particular, chemical reaction networks with first-order reactions will be considered in detail.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English
-
Seminar
Relativistic Jet Simulations and Modeling on Horizon Scale
February 8 (Thu) at 13:00 - 14:30, 2024
Yosuke Mizuno (T.D. Lee Fellow / Associate Professor, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, China)
Relativistic jets are launched in the vicinity of the central black holes and emit powerful radiation across the electromagnetic spectrum. According to our current understanding, relativistic jets are launched by directly tapping the rotational energy of spinning black holes via the so-called Blandford-Znajek process. In addition to the spin of the black hole, numerical simulations showed the amount of accreted magnetized flux has a major impact on the formation of relativistic jets. We have investigated the radiative signatures of self-consistently launched relativistic jets using 3D general relativistic magneto-hydrodynamical simulations and general relativistic radiative transfer calculations in horizon scale to the connection with large-scale structure. We discuss our findings and comparison with observations.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Recent advances in nuclear Density Functional Theory and applications to the nuclear response
February 6 (Tue) at 13:30 - 15:00, 2024
Gianluca Colò (Professor, Department of Physics, University of Milan, Italy / Professor, Sezione di Milano, INFN, Italy)
In this contribution, I will give an overall (and, of course, biased) view of the general status of DFT. I will stress that, in contrast to ab initio methods, DFT is the only framework that allows the study of excited states, including those lying at relatively high energy. Accordingly, I will focus on the nuclear response. After a reminder on the nuclear Giant Resonances and the link with the nuclear equation of state, I will discuss the projection methods to restore symmetries in the calculations of deformed systems. While symmetry-restored calculations are nowadays of common use in the study of ground-state properties and low-lying excitations, similar realistic investigations for the nuclear response are essentially missing in the literature. Recently, we have implemented an exact Angular Momentum Projection (AMP) on top of Skyrme-Random Phase Approximation (RPA) calculations in a projection after variation (PAV) scheme, for the first time. The results will be critically analysed in the case of the monopole response, also taking into account the experimental investigations that can be envisioned for well-deformed systems. If time allows, the nuclear response will be also discussed as a way to improve the current density functionals and ground them on ab initio nuclear theory. This seminar is co-hosted by Nuclear Many-body Theory Laboratory and Few-body Systems in Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science.
Venue: 2F Large Meeting Room, RIBF Building, RIKEN Wako Campus (Main Venue) / via Zoom
Event Official Language: English
-
Seminar
Nuclear Energy-Density Functional Approach to Bridging Neutron-Rich Nuclei and Neutron Stars
February 5 (Mon) at 13:30 - 15:00, 2024
Kenichi Yoshida (Associate Professor, Research Center for Nuclear Physics, Osaka University)
Understanding the properties of neutron-rich nuclei has been a central subject in low-energy nuclear physics. The great interest lies not only in the pursuit of a variety of structures and the elucidation of the mechanisms of their occurrence but also in obtaining insights into the structure of the inner crust of neutron stars. With advances in neutron-star observation techniques, the structure of neutron stars has been becoming better understood. The data accumulated from these observations unveil properties of neutron-rich matter that are otherwise inaccessible through terrestrial experiments. In this talk, I will introduce an attempt to construct a nuclear energy-density functional (EDF) inspired by the observations and then demonstrate its applicability to nuclear structure problems, including mass and deformation. One intriguing aspect of neutron stars is the emergence of superfluidity, especially the occurrence of spin-triplet pairing. I will discuss the unconventional pairing in nuclei within the nuclear EDF framework and give perspectives on the study of the phase diagram of the superfluidity in neutron stars. This seminar is co-hosted by UKAKUREN.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English
-
Can social issues be solved by mathematical science!? - Mathematical Research in Corporations
February 3 (Sat) at 13:00 - 17:00, 2024
Continuing from the previous fiscal year, we will be hosting a symposium exploring the potential of solving societal issues through mathematical science research. In the past two years, the themes were "Attempts and Challenges" and "Connecting Corporate Issues and Mathematical Sciences." This year, we will focus on concrete examples under the title "Mathematical Research in Corporations" with the aim of introducing activities utilizing mathematics in the corporate sector. Currently, we are inviting speakers with diverse backgrounds, including researchers actively engaged in mathematical activities within corporations or those who have transitioned from corporate mathematical research to academic settings. We are particularly interested in learning about the experiences of individuals who have used mathematics in corporate settings. Additionally, there has been a growing trend in connecting activities of graduate students in mathematics with corporate endeavors. By sharing such initiatives with participants, we plan to conduct a panel session for exchanging opinions on the role of mathematical science in addressing societal issues through corporate collaboration in the future. We sincerely look forward to the active participation of corporate researchers and mathematicians who have an interest in these activities.
Venue: Hybrid Format (Noyori Conference Hall, Nagoya University and Zoom)
Event Official Language: Japanese
-
Competition across scales in biology
January 31 (Wed) at 11:00 - 12:00, 2024
Sidhartha Goyal (Associate Professor, Department of Physics, University of Toronto, Canada)
Many biological phenomena emerge from interaction and competition between its parts. I will share some examples across biological scales where data-driven theory can reveal new rules of biological competition. At the molecular scale competition between mitochondrial genomes within budding yeast depends on genome architecture; dynamics of adaptive immunity in microbes reveal different modalities of competition and coexistence of bacteria and its phages; in mammals cellular reprogramming may be driven by elite clones, and tumor response to drugs is driven by "epigenetic" switching. Going beyond, I will present some ideas on understanding dynamical systems that govern cell fate dynamics and if competition may play a role in it. Short bio: Sidhartha Goyal got his PhD in Physics at Princeton in 2009 and then moved to Kavli Institute for Theoretical Physics, Santa Barbara for a postdoc. He got his first degree in Electrical Engineering from IIT Bombay. He is now an Associate Professor in the Physics Department at University of Toronto interested in collective phenomena in biology across scales.
Venue: via Zoom
Event Official Language: English
149 events in 2024
Events
Categories
series
- iTHEMS Colloquium
- MACS Colloquium
- iTHEMS Seminar
- iTHEMS Math Seminar
- DMWG Seminar
- iTHEMS Biology Seminar
- iTHEMS Theoretical Physics Seminar
- Information Theory SG Seminar
- Quantum Matter Seminar
- ABBL-iTHEMS Joint Astro Seminar
- Math-Phys Seminar
- Quantum Gravity Gatherings
- RIKEN Quantum Seminar
- Quantum Computation SG Seminar
- DEEP-IN Seminar
- NEW WG Seminar
- Lab-Theory Standing Talks
- QFT-core Seminar
- STAMP Seminar
- QuCoIn Seminar
- Number Theory Seminar
- Berkeley-iTHEMS Seminar
- iTHEMS-RNC Meson Science Lab. Joint Seminar
- Academic-Industrial Innovation Lecture
- RIKEN Quantum Lecture
- Theory of Operator Algebras
- iTHEMS Intensive Course-Evolution of Cooperation
- Introduction to Public-Key Cryptography
- Knot Theory
- iTHES Theoretical Science Colloquium
- SUURI-COOL Seminar
- iTHES Seminar