Seminar
615 events

Seminar
Plasticity in the endogenous rhythms and the adaptation to the tidal environment in a freshwater snail
December 14 (Thu) at 16:00  17:00, 2023
Takumi Yokomizo (JSPS Research Fellow PD, Graduate School of Science, Chiba University)
Organisms have diverse biological clocks synchronized with environmental cycles depending on their habitats. The change in endogenous rhythms could contribute to range expansion in a novel rhythmic environment. For example, the Anticipation of tidal changes has driven the evolution of circatidal rhythms in some marine species. I am interested in the genetic and nongenetic changes in the biological rhythms and adaptation to tidal environments in the freshwater snail, Semisulcospira reiniana. Chronobiological analyses of behavior and gene expression revealed that snails had habitatspecific endogenous rhythms: individuals in a nontidal population showed the circadian rhythm while those in a tidal population showed the circadian and circatidal rhythms. The entrainment to the simulated tidal cycles increased the strength of circatidal activity only in snails in a tidal population. Although the circatidal rhythms in the transcriptome were clearer in individuals entrained to tidal cycles, the number of circatidal rhythmic transcripts was greater in a tidal population than in a nontidal population. These results suggest biological rhythms in the snails plastically change at the molecular level, but the strength of circatidal rhythm is different between populations. Finally, transcriptomewide population genetic analysis revealed that these two populations can be clearly distinguished genetically, though the genetic distance was very small. Thus, genetic differentiation in biological rhythms could result from the evolution of a small number of genes. These findings suggest that adaptive plasticity and genetic changes in the biological rhythms play an important role in coping with tidal environments.
Venue: via Zoom
Event Official Language: English

Tropical geometry and period integrals
December 13 (Wed) at 14:00  16:30, 2023
Yuto Yamamoto (Special Postdoctoral Researcher, iTHEMS)
Tropical geometry is a field of mathematics that naturally emerges when considering the limits of spaces with respect to some parameters. One of the motivations to study tropical geometry is to describe the behaviors of the spaces under the limit. In this math seminar, starting with a brief introduction to tropical geometry, we discuss its application to computation of period integrals, which are one of the most fundamental quantities of complex manifolds. The goal is to compute asymtptotics of period integrals for complex hypersurfaces in toric varieties using tropical geometry, and observe that the Riemann zeta values (or the gamma classes) appear in the result of the computation. The first half of the talk will be a brief introduction to tropical geometry for nonexperts including those who are working outside mathematics, and everyone will be welcome.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English

Exploring material strengths of dust aggregates in planet formation by numerical simulations
December 8 (Fri) at 14:00  15:15, 2023
Misako Tatsuuma (Research Scientist, iTHEMS)
The planet formation process is the growth from submicrometersized cosmic dust grains to thousandkilometersized planets. This growth process has broadly two phases: the growth from dust grains to kilometersized planetesimals, mainly driven by intermolecular forces like van der Waals forces and hydrogen bonds, and the subsequent growth from planetesimals to planets, governed by gravitational forces. However, the planetesimal formation process encounters various challenges, including fragmentation and bouncing resulting from collisions among dust aggregates. To gain insights into the planetesimal formation process and how to avoid these obstacles, I have been focused on measuring and formulating the material strengths of dust aggregates using grain simulations. In this talk, I will introduce my works on the material strengths of dust aggregates and their applications to kilometersized bodies in the solar system, such as comets and asteroids.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English

Seminar
Gravitational Lensing in Black Hole Spacetimes of the PlebanskiDemianski Class
December 6 (Wed) at 16:00  17:30, 2023
Torben Christian Frost (Postdoctoral Researcher, Kavli Institute for Astronomy and Astrophysics, Peking University, China)
Einstein's field equations allow various different black hole solutions. Among these solutions, the most famous are most likely the Schwarzschild and the Kerr spacetimes, which are both special cases of the socalled PlebanskiDemianski spacetime. Besides the Schwarzschild and Kerr spacetimes, the PlebanskiDemianski spacetime also includes other solutions as special cases, among them the Cmetric and the NUT metric. They describe a linearly accelerating black hole and a black hole with gravitomagnetic charge, respectively. The question is now how we can determine if an astrophysical black hole can be described by one of these spacetimes. We will address this question using gravitational lensing for the three spacetimes with the most salient lensing features, namely the Cmetric, the NUT metric, and the Kerr metric. For this purpose, we will first outline how to solve the equations of motion analytically using elementary and Jacobi's elliptic functions as well as Legendre's elliptic integrals. Then we will fix an observer in the domain of outer communication and relate the constants of motion of the lightlike geodesics to latitudelongitude coordinates on the observer's celestial sphere. We will use the analytic solutions to write down the lens equations, calculate the redshift, and the travel time. Finally, we will discuss and compare the results and comment on how we can use them to place constraints on the spin parameter, the acceleration parameter, and the gravitomagnetic charge of a black hole.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English

Seminar
Cosection localization via shifted symplectic geometry
December 6 (Wed) at 10:00  11:30, 2023
YoungHoon Kiem (Professor, School of Mathematics, Korea Institute for Advanced Study (KIAS), Republic of Korea)
Modern enumerative invariants are defined as integrals of cohomology classes against virtual fundamental classes constructed by LiTian and BehrendFantechi. When the obstruction sheaf admits a cosection, the virtual fundamental class is localized to the zero locus of the cosection. When the cosection is furthermore enhanced to a (1)shifted closed 1form, the zero locus admits a (2)shifted symplectic structure and thus we have another virtual fundamental class by the OhThomas construction. An obvious question is whether these two virtual fundamental classes coincide or not. In this talk, we will see that (1)shifted closed 1forms arise naturally as an analogue of the Lagrange multiplier method. Furthermore, a proof of the equality of the two virtual fundamental classes and its applications will be discussed. Based on a joint work with Hyeonjun Park.
Venue: Seminar Room #359
Event Official Language: English

Translating between evolutionary game theory and theoretical ecology
December 5 (Tue) at 16:30  17:30, 2023
Arne Traulsen (Director, Department for Theoretical Biology, Max Planck Institute for Evolutionary Biology, Germany)
Both theoretical ecology and evolutionary game theory describe the dynamics of interacting populations. More than 40 years ago, Hofbauer and Sigmund established a mathematical equivalence between the LotkaVolterra equations and the replicator dynamics from evolutionary game theory. However, this equivalence has not been exploited by empiricists so far. One of the issues is dimensionality: An ecological interaction of two species corresponds to an evolutionary game between three types. Only when we focus on a special case with identical growth rates, it is possible to translate without this trick, leading to a more direct equivalence between the frameworks. Consequently, one has to be particularly careful how to classify interactions and how to assess dynamical outcomes. For example, a ‘Prisoner's Dilemma’ interaction where the `cooperators' have a higher intrinsic growth rate than `defectors' can result in stable coexistence of the two types and may ultimately not represent a social dilemma at all.
Venue: via Zoom
Event Official Language: English

Seminar
Rotating discs on the Kerr black hole background
December 5 (Tue) at 15:00  16:30, 2023
David Kofroň (Postdoctoral Researcher, Institute of Theoretical Physics, Charles University, Czechia)
Analytical solution of a rotating black hole surrounded by accretion disc in full GR is, so far, unknown. The Ernst equation is nonlinear. In this talk, we will provide a framework in which the solutions of linearised Ernst equations can be obtained from the linear perturbations of Kerr black hole treated in the formalism of the Debye potentials. In this way, we recover all the metric perturbations in term of a single complex scalar function (which solves the Laplace equation).
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English

Seminar
Gravity of Accretion Discs and Black Holes
December 5 (Tue) at 14:00  15:00, 2023
Petr Kotlařík (Ph.D. Student, Institute of Theoretical Physics, Charles University, Czechia)
The typical black hole solutions describe only isolated black holes. However, in astrophysics, such a condition is never strictly satisfied. As matter accretes onto the black hole, disc structures are often formed. In this talk, I will summarize our recent attempts to find the gravitational field of such a nonisolated black hole. We start from the simplest case of static and axially symmetric metric. Although it is a somewhat "rough" approximation in the astrophysical context, this idealization may already help us to understand some interesting implications of the disc's gravity. Moreover, with such a simplification, we can obtain exact analytical "superpositions" of the Schwarzchild black hole and a disc. When some rotation is present, dragging effects complicate the situation dramatically. Then, one typically has to resort to numerical relativity or some approximate methods, e.g., perturbations. In the talk, I also address the stationary case and demonstrate what we can do on the level of the direct metric perturbation.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English

Seminar
Breaking down the magnonic WiedemannFranz law in the hydrodynamic regime
December 4 (Mon) at 15:00  16:30, 2023
Ryotaro Sano (Ph.D. Student, Division of Physics and Astronomy, Graduate School of Science, Kyoto University)
Quantum transport has attracted a profound growth of interest owing to its fundamental importance and many applications in condensed matter physics. Recent significant developments in experimental techniques have further boosted the study of quantum transport. Notably in ultraclean systems, strong interactions between quasiparticles drastically affect the transport properties, resulting in an emergent hydrodynamic behavior. Recent experiments on ultrapure ferromagnetic insulators have opened up new pathways for magnon hydrodynamics. Hydrodynamic magnon transport implies exhibiting extraordinary features and has a potential for innovative functionalities beyond the conventional noninteracting magnon picture. However, the direct observation of magnon fluids remains an open issue due to the lack of probes to access the time and length scales characteristics of this regime. In this work, we derive a set of coupled hydrodynamic equations for a magnon fluid and study the spin and thermal conductivities by focusing on the most dominant time scales [1]. As a hallmark of the hydrodynamic regime, we reveal that the ratio between the two conductivities shows a large deviation from the socalled magnonic WF law. We also identify an origin of the drastic breakdown of the magnonic WF law as the difference in relaxation processes between spin and heat currents, which is unique to the hydrodynamic regime. Therefore, our results will become key evidence for an emergent hydrodynamic magnon behavior and lead to the direct observation of magnon fluids.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English

Evolution by gene and genome duplications
November 28 (Tue) at 16:00  17:00, 2023
Jeffrey Fawcett (Senior Research Scientist, iTHEMS)
Each organism typically has (tens of) thousands of genes in its genome that perform various molecular and cellular functions, but how did these genes originate? The answer for most genes is by the duplication of another gene. In fact, all the genes (the entire genome) can get duplicated simultaneously on some instances. Thus, gene and genome duplications are considered key driving forces of evolution and are one of the most important topics in molecular evolutionary biology. In this talk, I will introduce the background and basic concepts related to gene and genome duplications. The talk will be aimed at nonexperts so nonbiologists are also welcome to attend.
Venue: via Zoom
Event Official Language: English

Early Formation of Dark Matter Halos
November 24 (Fri) at 14:00  15:15, 2023
Derek Beattie Inman (Research Scientist, iTHEMS)
Cosmological observations have led to an extremely precise understanding of the largescale structure of the Universe. A common assumption is to extrapolate largescale properties to smaller scales; however, whether this is correct or not is unknown and many wellmotivated early Universe scenarios predict substantially different structure formation histories. In this seminar I will discuss two scenarios where nonlinear structures form much earlier than is typically assumed. In the first case, the initial fluctuations are enhanced on small scales leading to either primordial black holes clusters or WIMP minihalos right after matterradiation equality. In the second, I will show that an additional attractive dark force leads to structure formation even in the radiation dominated Universe. I will furthermore discuss possible observations of such early structure formation including changes to the cosmic microwave background, dark matter annihilation, and when the first galaxies form.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English

Seminar
Volume complexity of de Sitter bubbles
November 22 (Wed) at 16:00  17:30, 2023
Nicolò Zenoni (Project Researcher, Department of Physics, Osaka University)
Holographic complexity is conjectured to probe the evolution of spacetime. For black holes in antide Sitter (AdS) spacetime the growth rate of complexity approaches a constant value at late times, while in de Sitter (dS) spacetime it diverges at a finite critical time. In this talk, we consider geometries interpolating between AdS and dS. In particular, we discuss the evolution of volume complexity in a class of threedimensional asymptotically antide Sitter geometries including dynamical bubbles of de Sitter in their interior. According to the dynamics of the bubble, complexity qualitatively behaves either as in the AdS black hole or as in the dS case. We conclude with some remarks about the possible dual interpretation.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English

X's Fast and Slow
November 21 (Tue) at 16:00  17:00, 2023
Thomas Hitchcock (Special Postdoctoral Researcher, iTHEMS)
Sex chromosomes have long been suggested to undergo distinct evolutionary dynamics to the rest of the genome. Their distinct ploidy and transmission genetics may result in differing strengths of selection, magnitude of drift, and mutation rates to the autosomes, particularly if there are sex differences. Consequently, a body of theory and empirical work has developed investigating such differences, and how they might manifest in the rates of change between populations, and the diversity observed within populations. I will briefly review the theoretical basis of these comparisons, how we can infer rates of evolutionary change from genetic data, and what we can learn from nonmodel systems, particularly focusing on fungus gnats and pea aphids.
Venue: via Zoom
Event Official Language: English

Seminar
Introduction and prospects of topological recursion
November 17 (Fri) at 15:00  17:00, 2023
Osuga Kento (JSPS Research Fellow PD, Graduate School of Mathematical Sciences, The University of Tokyo)
Topological recursion is a universal recursive formalism that connects many branches in mathematical physics, such as enumerative geometry, algebraic geometry, integrable hierarchy, matrix models, 2d gravity, and more. In the first half of this talk, I will give a pedagogical overview of topological recursion and present simple examples from which we learn how topological recursion works. Then in the second half, I will present some ongoing research projects as well as a few future directions in topological recursion.
Venue: Seminar Room #359
Event Official Language: English

Seminar
Geometry of special nilpotent orbits
November 15 (Wed) at 14:00  15:30, 2023
Baohua Fu (Professor, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China)
Special nilpotent orbits play a key role in representation theory, but their geometry is little understood. I'll first report a joint work with Yongbin Ruan and Yaoxiong Wen proposing a mirror symmetry conjecture for special nilpotent orbits and then a joint work with Daniel Juteau, Paul Levy and Eric Sommers on the proof of sliced version of Lusztig's conjecture on special pieces.
Venue: via Zoom
Event Official Language: English

Seminar
Vortex Reconnection in Classical and Quantum Fluids
November 10 (Fri) at 15:00  16:30, 2023
Yoshifumi Kimura (Professor, Graduate School of Mathematics, Nagoya University)
As a fundamental process in turbulence, vortex reconnection has been studied widely not only in classical fluids but also in quantum fluids. For the latter, the first real observation of vortex reconnection was rather recent, and since then active analyses have been continued. On the other hand, vortex reconnection in the former has a long history, and it is now studied intensively as a candidate for a solution to the problem of the regularity/Singularity of the NavierStokes equations, which is one of the seven millennium prize problems of the Clay Mathematical Institute. In this talk, after introducing the problem, we will present some results of analysis and simulations of the dynamical system which has been proposed to describe a vortex reconnection of two vortex rings located symmetrically on two tilted planes [1], [2], [3]. Then it will be shown that this dynamical system can be written in noncanonical Hamiltonian form with Hamiltonian, H, and a Casimir invariant, C in the limit of zero viscosity [4].
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English

Patterns of fern community assembly throughout the American continent: Do the mechanisms of species diversification also vary with latitude?
November 7 (Tue) at 16:00  17:00, 2023
José Said GutiérrezOrtega (Special Postdoctoral Researcher, iTHEMS)
The global latitudinal gradient of biodiversity, a pattern suggesting that the lowlatitude (tropical) areas have more species than the highlatitude (temperate) areas, represents the most conspicuous pattern of correlation between the environmental/geographic variation and biodiversity distribution. Yet, the relative roles of all ecological, geographic, and historical variables that can explain the gradient are unclear. Specifically, it is because we do not have a clear link between latitude and the underlying mechanisms that originate and extinct species throughout the gradient. In other words, we lack a connection between the “macroevolutionary patterns" and “microevolutionary processes”. I am researching the community assembly of ferns from the American continent, as it seems to be a group that can give some answers to what causes the latitudinal gradient of biodiversity and how the gradient is related to the processes of speciation and extinction. Regarding the community assembly, as expected, I found that the fern community clearly follows the latitudinal gradient: the number of species and localities colonized by ferns decrease with latitude. Also, this pattern is associated to a strong phylogenetic structure: the community at each latitudinal area is dependent of the previously colonizing genera (in other words, genera tend to diversify within specific latitudinal spans; most of them are restricted to the tropics). These results suggest that the fern community from the American continent follows the latitudinal gradient, and that it is a good representer of this pattern. Then, using linear regressions, I tested some classical hypotheses that have been proposed to explain the latitudinal gradient (e.g., that tropical environments, being more thermodynamically active, promote higher speciation rates). However, my results so far, suggest that none of the previously proposed hypotheses give a satisfactory explanation: there is no a single factor that can link the gradient with the processes of speciation or extinction. Rather, my data suggest that to promote speciation, the relative roles of environmental differentiation, geographic isolation, niche divergence, and time since divergence between sister species pairs vary with latitude. For example, to become new species, species near the equator did not need much geographic isolation or niche divergence from their sister counterparts (i.e., near the equator, species pairs tend to be more sympatric and present higher niche overlap). I hope my talk can stimulate some discussion about how to approach and treat the data that I have compiled, and that we can create opportunities for further collaboration.
Venue: via Zoom
Event Official Language: English

Seminar
Compact Star Solutions Beyond General Relativity
November 7 (Tue) at 13:30  15:00, 2023
Kota Numajiri (Ph.D. Student, Graduate School of Science, Nagoya University)
The neutron star solutions have been gathering attention. Their high compactness enables us to observationally access the information about extreme regimes of hadron physics. On the other hand, their strong gravity features bring up another possibility, gravity beyond general relativity (GR). Although GR has been a great success until now, the present scenario for our universe still has several problems, such as dark sectors and the quantum description of gravity. To tackle these problems, the modified gravity theories have been discussed for decades. Their modifications are expected to become noticeable in strong gravity regimes like compact stars. In this talk, I will discuss the configuration of the compact star solution under the F(R) gravity, one of the most popular and simplest modifications of GR. The background hydrostatic solutions are calculated with some F(R) models, which show nontrivial influences from the additional scalar DOF in this theory. The tidal deformation phenomenon is also considered to focus on another observable, tidal deformability. I will comment on how to utilize obtained observables to determine the gravity theory and the unknown equation of state simultaneously.
Venue: Seminar Room #359 (Main Venue) / via Zoom
Event Official Language: English

Mathematical modelling of the host response to inhalational anthrax across different scales
October 31 (Tue) at 16:00  17:00, 2023
Bevelynn Williams (Postdoctoral Fellow, School of Mathematics, University of Leeds, UK)
Inhalational anthrax, caused by the bacterium Bacillus anthracis, is a disease with very high fatality rates. Due to the significant risk posed if the bacterium was to be intentionally used as a bioweapon, it is important to be able to defend against such an attack and to make optimal decisions about treatment strategies. Mechanistic mathematical models can help to quantify and improve understanding of the underlying mechanisms of the infection. In this talk, I will present a multiscale mathematical model for the infection dynamics of inhalational anthrax. This approach involves constructing individual models for the intracellular, withinhost, and populationlevel infection dynamics, to define key quantities characterising infection at each level, which can be used to link dynamics across scales. I will begin by introducing a model for the intracellular infection dynamics of B. anthracis, which describes the interaction between B. anthracis spores and host cells. The model can be used to predict the distribution of outcomes from this hostpathogen interaction. For example, it can be used to estimate the number of bacteria released upon rupture of an infected phagocyte, as well as the timing of phagocyte rupture and bacterial release. Next, I will show how these key outputs can be used to connect the intracellular model to a model of the infection at the withinhost scale. The withinhost model aims to provide an overall understanding of the early progression of the infection, and is parametrised with infection data from studies of rabbits and guinea pigs. Furthermore, this model allows the probability of infection and the time to infection to be calculated. Building a model that offers a realistic mechanistic description of these different animal responses to the inhalation of B. anthracis spores is an important step towards eventually extrapolating the model to describe the dynamics of human infection. This would enable predictions of how many individuals would become infected in different exposure scenarios and also on what timescale this would occur.
Venue: via Zoom / Hybrid Format (3F #359 and Zoom), Main Research Building
Event Official Language: English

Seminar
Searching for dark neutrinos through exotic Higgs decays at the ILC
October 24 (Tue) at 16:30  17:30, 2023
Simon Thor (Ph.D. Student, KTH Royal Institute of Technology, Sweden)
In this study we investigate the feasibility of detecting heavy dark neutrinos ($N_d$) through exotic Higgs decays at the proposed International Linear Collider (ILC), specifically in the channel of $e^+ e^ \to qq~ H$ with $H\to \nu N_d \to \nu~lW \to \nu l~qq$. Analyses based on full detector simulations of the ILD are performed at the centerofmass energy of 250 GeV for two different beam polarization schemes with a total integrated luminosity of 2 $\mathrm{ab}^{1}$. A range of dark neutrino masses between the $Z$ boson and Higgs boson masses are studied. The $2\sigma$ significance reach for the joint branching ratio of $BR(H\to\nu N_d)\cdot BR(N_d\to lW)$ is about 0.1\%, nearly independent of the dark neutrino masses, while the $5\sigma$ discovery is possible at a branching ratio of $0.3\%$. Interpreting these results in terms of constraints on the mixing parameters $\varepsilon_{id}^2$ between SM neutrinos and the dark neutrino, it is expected to have a factor of 10 improvement from current constraints.
Venue: via Zoom
Event Official Language: English
615 events
Events
Categories
series
 iTHEMS Colloquium
 MACS Colloquium
 iTHEMS Seminar
 iTHEMS Math Seminar
 DMWG Seminar
 iTHEMS Biology Seminar
 iTHEMS Theoretical Physics Seminar
 Information Theory SG Seminar
 Quantum Matter Seminar
 ABBLiTHEMS Joint Astro Seminar
 MathPhys Seminar
 Quantum Gravity Gatherings
 RIKEN Quantum Seminar
 Quantum Computation SG Seminar
 NEW WG Seminar
 LabTheory Standing Talks
 QFTcore Seminar
 STAMP Seminar
 QuCoIn Seminar
 Number Theory Seminar
 BerkeleyiTHEMS Seminar
 iTHEMSRNC Meson Science Lab. Joint Seminar
 AcademicIndustrial Innovation Lecture
 RIKEN Quantum Lecture
 Theory of Operator Algebras
 iTHEMS Intensive CourseEvolution of Cooperation
 Introduction to PublicKey Cryptography
 Knot Theory
 iTHES Theoretical Science Colloquium
 SUURICOOL Seminar
 iTHES Seminar