White dwarf binary stars as physics laboratories
- Date
- November 29 (Fri) at 14:00 - 15:15, 2024 (JST)
- Speaker
-
- Lucy McNeill (Postdoctoral Researcher, iTHEMS)
- Language
- English
- Host
- Shigehiro Nagataki
White dwarfs are the most common remnant of stellar evolution, and most often orbit a binary companion. Orbital decay from gravitational radiation and binary stellar evolution can proceed to mass transfer onto the white dwarf, which may result in a Type Ia supernova.
While these reliable thermonuclear explosions are essential tools for observational cosmology, the nature of the progenitor binary (double white dwarf, or white dwarf + evolved star) is still not clear. Surprisingly, recent galaxy surveys revealed that most Type Ia supernova come from exploding white dwarfs below the Chandrasekhar limit of 1.4 solar mass. Plus, observations of Milky Way white dwarf binaries suggest unexpectedly hot temperatures in double white dwarf merger progenitors.
I will summarise our recent developments on the stellar structure and orbital evolution of finite temperature, partially degenerate white dwarfs in binary systems. Tidal heating can explain how candidate white dwarf merger progenitors are generically hot, which places more restrictive conditions required for a double white dwarf merger.
This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.