Date
December 2 (Mon) at 14:00 - 15:30, 2024 (JST)
Speaker
  • Naoko Nakagawa (Professor, Ibaraki University)
Language
English
Host
Yuki Yokokura

Non-equilibrium phenomena are typically addressed through continuum descriptions based on local equilibrium and linear response theory, such as hydrodynamics. While effective, these approaches often overlook global characteristics. We propose Global Thermodynamics as a minimal-variable framework to describe weak non-equilibrium systems, focusing on two-phase coexistence under weak heat flux.

By introducing a unique global temperature and extending entropy to non-equilibrium systems with a non-additive term, the framework predicts phenomena like metastable state stabilization—beyond the scope of traditional heat conduction equations. This talk will outline the framework, its key predictions, and validation efforts through numerical simulations and experiments.

(This is a joint seminar with Informatin Theory Study Group.)

References

  1. Naoko Nakagawa, Shin-ichi Sasa, Liquid-Gas Transitions in Steady Heat Conduction, Phys. Rev. Lett. 119, 260602 (2017), doi: 10.1103/PhysRevLett.119.260602
  2. Naoko Nakagawa, Shin-ichi Sasa, Global Thermodynamics for Heat Conduction Systems, Journal of Statistical Physics 177:825–888 (2019), doi: 10.1007/s10955-019-02393-2
  3. Naoko Nakagawa, Shin-ichi Sasa, Unique extension of the maximum entropy principle to phase coexistence in heat conduction, Phys. Rev. Research 4, 033155 (2022), doi: 10.1103/PhysRevResearch.4.033155
  4. Michikazu Kobayashi, Naoko Nakagawa, Shin-ichi Sasa, Control of Metastable States by Heat Flux in the Hamiltonian Potts Model, Phys. Rev. Lett. 130, 247102 (2023), doi: 10.1103/PhysRevLett.130.247102

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event