Seminar
751 events
-
Composite Dark matter and gravitational waves
October 20 (Tue) at 10:00 - 11:00, 2020
Enrico Rinaldi (Visiting Scientist, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) / AI Researcher/Engineer, Arithmer Inc.)
With non-perturbative lattice calculations we investigate the finite-temperature confinement transition of a composite dark matter model. We focus on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Future searches for stochastic gravitational waves will provide a new way to discover or constrain composite dark matter, in addition to direct-detection and collider experiments. As a first step to enabling this phenomenology, we determine how heavy the dark fermions need to be in order to produce a first-order stealth dark matter confinement transition.
Venue: via Zoom
Event Official Language: English
-
A PDE model for the localization and spread of flu in the human respiratory tract
October 14 (Wed) at 10:00 - 11:00, 2020
Christian Quirouette (Ph.D. Student, Department of Medical Physics, Ryerson University, Canada)
Within the human respiratory tract (HRT), virus diffuses through the periciliary fluid (PCF) bathing the epithelium. But it also undergoes advection: as the mucus layer sitting atop the PCF is pushed along by the ciliated cell's beating cilia, the PCF and its virus contents are also pushed along, upwards towards the nose and mouth. Our PDE model represents the HRT as a one-dimensional track extending from the nose down to the lower HRT, wherein stationary cells interact with virus which moves within (diffusion) and along with (advection) the PCF. In the PDE model, diffusion is negligible in the presence of advection which effectively sweeps away virus, preventing infection from spreading below the depth of deposition. Higher virus production rates (10-fold) are required at higher advection speeds (40 micron/s) to maintain equivalent infection severity and timing. Because virus is entrained upwards, upper parts of the HRT located downstream of the advection flow see more virus than lower parts, and so infection grows, peaks, and resolves later in the lower HRT. Clinically, the infection would appear to progress from the upper towards the lower HRT, as reported in mice. When the PDE model is expanded to include cellular regeneration and an immune response, it reproduces tissue damage levels reported in patients. This new PDE model offers a convenient and unique platform from which to study the localization and spread of respiratory viruses (flu, RSV, COVID-19) within the HRT during an infection.
Venue: via Zoom
Event Official Language: English
-
TQFT, integrable lattice model, and quiver gauge theories
October 2 (Fri) at 16:00 - 18:00, 2020
Toshihiro Ota (Student Trainee, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) / Ph.D. Student, Graduate School of Science, Osaka University)
1st part (math): In physics literature, “lattice models” appear quite often as mathematical models of physical systems, e.g. Ising model, vertex models, lattice gauge theory. The aim of the 1st part is to introduce ‘what is (T)QFT,’ ‘what is lattice model,’ and ‘what does integrability mean’ in the language of mathematics. In turn, they will play a crucial role in the 2nd part of my talk. I also hope that this will lead to a good exchange among us, especially between physicists and mathematicians. 2nd part (physics): In the 2nd part, I would like to explain where an integrable lattice model may come from, especially for people in the physics background. I will show a certain class of integrable lattice models is realized by Wilson-’t Hooft lines in 4d quiver gauge theories. I will also explain a bit how these gauge theories are constructed from brane configurations in string theory. String dualities allow us to relate the original 4d setups to 4d partially topological Chern-Simons theory, which is a partial TQFT and generates integrable lattice models. Please contact Keita Mikami's mail address to get access to the Zoom meeting room.
Venue: via Zoom
Event Official Language: English
-
Seminar
The Uchuu Simulations: Data Release 1 and Dark Matter Halo Concentrations
October 1 (Thu) at 14:00 - 15:00, 2020
Tomoaki Ishiyama (Associate Professor, Institute of Management and Information Technologies)
We introduce the Uchuu suite of large high-resolution cosmological N-body simulations. The largest simulation, named Uchuu, consists of 2.1 trillion dark matter particles in a box of 2.0 Gpc/h. The highest resolution simulation, called Shin-Uchuu, consists of 262 billion particles in a box of 140 Mpc/h. Combining these simulations we can follow the evolution of dark matter haloes (and subhaloes) spanning from dwarf galaxies to massive galaxy cluster hosts. We present basic statistics, dark matter power spectra and halo (subhalo) mass function, to demonstrate the huge dynamic range and superb statistics of the Uchuu simulations. From the analysis of the evolution of the power spectra we conclude that our simulations are accurate enough from the Baryon Acoustic Oscillations up to very small scales. We also provide parameters of a mass-concentration model, which describes the evolution of halo concentrations, that reproduces our simulation data within 5% error for haloes with masses spanning nearly eight orders of magnitude at redshift 0
Venue: via Zoom
Event Official Language: English
-
Math Seminars by Dr. Genki Ouchi and Dr. Kenta Sato
September 24 (Thu) at 16:00 - 18:10, 2020
Genki Ouchi (Special Postdoctoral Researcher, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS))
Kenta Sato (Special Postdoctoral Researcher, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS))[Talk 1] (16:00 - 17:00) Dr. Genki Ouchi Automorphism groups of cubic fourfolds and K3 categories In this talk, I would like to talk about symmetries of algebraic varieties, especially cubic fourfolds and K3 surfaces. It is known that symmetries of cubic fourfolds and K3 surfaces are related to sporadic finite groups as Mathieu groups and Conway groups in both algebraic geometry and string theory. Relations between cubic fourfolds and K3 surfaces are studied in the context of derived categories, Hodge theory and so on. I would like to explain the direct relation among symmetries of cubic fourfolds and K3 surfaces via their derived categories. [Talk 2] (17:10 - 18:10) Dr. Kenta Sato An algebraic approach to the four color theorem The four color theorem states that, given any separation of a plane into contiguous regions, no more than four colors are required to color the regions. Although this theorem was already proved about 40 years ago, another proof without using a computer is not found still now. In this talk, I will introduce an algebraic approach to this theorem, which states that a conjecture about singularities of algebraic varieties implies the four color theorem. In particular, I would like to focus on the connection of three different fields in mathematics: graph theory, convex geometry and algebraic geometry. *Detailed information about the seminar refer to the email.
Venue: via Zoom
Event Official Language: English
-
Phase Transitions in Biological Systems
September 23 (Wed) at 10:00 - 11:00, 2020
Kyosuke Adachi (Special Postdoctoral Researcher, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) / Special Postdoctoral Researcher, Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research (BDR))
Biological systems are built hierarchically by DNA, proteins, cells, tissues, organs, individuals, etc. Recent experiments have clarified the existence of interesting mesoscale phenomena inside cells, where the concept of condensed matter physics such as phase transition can be useful in its understanding. For example, interacting nucleosomes in a chromatin chain can cause the mega-base scale structural change, and sub-micron scale dense droplets of proteins/mRNAs can appear through phase separation. In this talk, I will discuss our recent topics: (i) structural transition of a chromatin with epigenetic marks, (ii) intracellular wetting of phase-separated droplets, and (iii) spontaneous aggregation of self-propelled individuals.
Venue: via Zoom
Event Official Language: English
-
Seminar
Eco-evolutionary dynamics with novel mutations
September 16 (Wed) at 10:00 - 11:00, 2020
Hye Jin Park (Junior Research Group Leader, Statistical physics of ecology and evolution group, Asia Pacific Center for Theoretical Physics, Republic of Korea)
Evolution is driven by individual birth and death that are determined by interactions between individuals. Hence studying interactions is crucial to understand the population evolution. However, traditional approaches dealt with those interaction structures are given while spontaneous random mutations can generate new interactors. We considered “mutant interactors,” which lead to new interactions between the residents and invading mutants that can drive the population away from the previous equilibrium and lead to changes in the population composition. Thus, first, we investigated the changes in the population size induced by mutant interactors[1]. And then, we applied this approach to answer the question about relationships between species[2]: Why is cyclic dominance so rare?
Venue: via Zoom
Event Official Language: English
-
Singular point implies coexistence in adaptive dynamics
September 9 (Wed) at 10:00 - 11:00, 2020
Masashi Tachikawa (Visiting Scientist, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) / Associate Professor, Institute for Frontier Life and Medical Sciences, Kyoto University)
Adaptive dynamics is a relatively new mathematical framework for studying evolution(~1990s). Under the influence of the mathematical ecology and the game theory, adaptive dynamics considers the effect of resident populations on the fitness landscape. As a result, it explains a possible mechanism of evolutionary branching. In this talk, I introduce adaptive dynamics and Pairwise Invasibility Plot (PIP) analysis, a standard method for understanding the adaptive dynamics. Then, I propose a new approach to analyze the adaptive dynamics which enable us to understand higher dimensional systems than PIP does.
Venue: via Zoom
Event Official Language: English
-
Maximal Regularity and Partial Differential Equations
September 8 (Tue) at 16:00 - 18:10, 2020
Ken Furukawa (Postdoctoral Researcher, Prediction Science Laboratory, RIKEN Cluster for Pioneering Research (CPR))
The theory of maximal regularity is a powerful tool to get solutions having the best regularity to linear partial differential equations (PDEs) of parabolic type. The theory is also applicable to show well-posedness of various non-linear PDEs. In the first part, We introduce the history of the development of the theory of maximal regularity and the way to apply non-linear PDEs. In the second part, We give some applications to PDEs, e. g. the primitive equations, the Navier-Stokes equations, and elliptic equations with dynamic boundary conditions. *Please contact Keita Mikami's mail address to get access to the Zoom meeting room.
Venue: via Zoom
Event Official Language: English
-
Seminar
Potential Toolkit to Attack Nonperturbative Aspects of QFT -Resurgence and related topics-
September 7 (Mon) - 25 (Fri), 2020
Aleksey Cherman (University of Minnesota, USA)
Gerald Dunne (University of Connecticut, USA)
Mithat Unsal (North Carolina State University, USA)
Toshiaki Fujimori (Keio University)
Yasuyuki Hatsuda (Rikkyo University)
Masazumi Honda (Assistant Professor, Yukawa Institute for Theoretical Physics, Kyoto University)
Okuto Morikawa (Ph.D. Student, Kyushu University)
Naohisa Sueishi (Nagoya University)
Masahito Yamazaki (Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), The University of Tokyo)Recently, there have been significant developments in theoretical techniques/frameworks to tackle non-perturbative aspects of quantum field theory (QFT) such as the resurgence theory, the Lefschetz thimble method, ’t Hooft anomaly matching, and novel lattice setups. Such developments are still growing very rapidly and making fruitful connections not only among physicists involved in fields with broad energy scales but also with mathematicians. These developments would enable us to unveil rich and exciting physics of QFT in the non-perturbative regime. It is of primary importance to hold a workshop for researchers in various fields related to the topics to get together and overview/share the recent progresses, to discuss future directions, and to seek for possible new collaborations bridging various fields of physics/mathematics. For more information, please see on the related link.
Venue: YITP (Kyoto University), Zoom, and Mozilla hubs
Event Official Language: English
-
The hitch-hiker’s guide to the concept of adaptive dynamics
September 2 (Wed) at 10:00 - 10:30, 2020
Ryosuke Iritani (Research Scientist, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS))
Adaptation is of multi-causality, composed of mutation and selection processes. I will talk about how we model adaptation on the basis of the adaptive dynamics framework. This is a very quick, conceptual talk, rather than heavily mathematical, to draw attention from more people.
Venue: via Zoom
Event Official Language: English
-
Seminar
Geometric Perspective for the Theory of Hydrodynamic Limits
August 31 (Mon) - September 1 (Tue), 2020
Makiko Sasada
Kenichi Bannai (Professor, Faculty of Science and Technology Department of Mathematics, Keio University)This is a series of lectures on "Geometric Perspectives for Fluid Dynamic Limit Theory" by the following speakers: [DAY 1: Aug 31] Dr. Makiko Sasada (University of Tokyo) [DAY 2: Sept 1] Prof. Kenichi Bannai (Keio University) Abstract: One of the fundamental problems in the natural and social sciences is to explain macroscopic phenomena that we can observe from the rules governing the microscopic system giving rise to the phenomena. Hydrodynamic limit provides a rigorous mathematical method to derive the deterministic partial differential equations describing the time evolution of macroscopic parameters, from the stochastic dynamics of a microscopic large scale interacting system. In the article "Topological Structures of Large Scale Interacting Systems via Uniform Locality" joint with Yukio Kametani, we introduce a general framework encompassing a wide variety of interacting systems in order to systematically investigate various microscopic stochastic large scale interacting systems in a unified fashion. In particular, we introduced a new cohomology theory called the uniformly local cohomology to investigate the underlying geometry of the interacting system. Our theory gives a new interpretation of the macroscopic parameters, the role played by the group action on the microscopic system, and the origin of the diffusion matrix associated to the macroscopic deterministic partial differential equation obtained via the space-time scaling limit of the microscopic system. The purpose of the series of lectures is to introduce to the audience the theory of hydrodynamic limits, especially the relation between the macroscopic observables and the microscopic interacting system. We then explain our new perspective of how geometry comes into play in investigating the interacting system, and introduce the ideas and results of our article. *Detailed information about the seminar refer to the email.
Venue: via Zoom
Event Official Language: English
-
Modeling biological timing
August 26 (Wed) at 10:00 - 11:00, 2020
Gen Kurosawa (Senior Research Scientist, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS))
Under stay-at-home situation, some of you may suffer from sleep disorder. Efficacy of a drug often depends on the timing of its prescription. We know this fact about our "timing", but we don't know why. This time, I wish to introduce two big mysteries in regard to biological timing. First is our internal daily clock. In general, biochemical process is believed to accelerate with temperature. In contrast, the period of our daily clock, made up of biochemical reactions is somehow stable to temperature. The prediction from simpler biochemical mathematical model, and its experimental verification will be presented. Second is hibernation. During winter, some birds and mammals decrease drastically their body temperature possibly to decrease their energy expenditure. Many studies about hibernation have been conducted for many years. However, basic mechanisms of hibernation (e.g. how the duration of hibernation is determined?) are largely unknown. Recently, we started to investigate body temperature time-series of hibernating hamsters over 100 days in the collaboration with experimental biologists. Preliminary results will be presented.
Venue: via Zoom
Event Official Language: English
-
Seminar
Lefschetz-thimble inspired analysis of the Dykhne–Davis–Pechukas method and an application for the Schwinger Mechanism
August 21 (Fri) at 13:00 - 14:30, 2020
Takuya Shimazaki (Researcher, Hadron Theory Group, The University of Tokyo)
Dykhne–Davis–Pechukas (DDP) method is a common approximation scheme for the transition probability in two-level quantum systems, as realized in the Landau–Zener effect, leading to an exponentially damping form comparable to the Schwinger pair production rate. We analyze the foundation of the DDP method using a modern complex technique inspired by the Lefschetz-thimble method. We derive an alternative and more adaptive formula that is useful even when the DDP method is inapplicable. As a benchmark, we study the modified Landau–Zener model and compare results from the DDP and our methods. We then revisit a derivation of the Schwinger Mechanism of particle production under electric fields using the DDP and our methods. We find that the DDP method gets worse for the Sauter type of short-lived electric pulse, while our method is still a reasonable approximation. We also study the Dynamically Assisted Schwinger Mechanism in two methods.
Venue: via Zoom
Event Official Language: English
-
Seminar
Nambu-Goldstone fermion in a Bose-Fermi mixture with an explicitly broken supersymmetry
August 7 (Fri) at 13:00 - 14:30, 2020
Hiroyuki Tajima (Assistant Professor, Department of Natural Science, Kochi University)
Supersymmetry, which is a symmetry associated with interchange between bosons and fermions, is one of the most important symmetries in high-energy physics but its evidence has never been observed yet. Apart from whether supersymmetric partners such as squark exist or not in our world, it is an interesting problem to explore the consequences of the supersymmetry in an ultracold atomic gas. In this study, we address the Nambu-Goldstone mode called Goldstino associated with the spontaneous supersymmetry breaking in a Bose-Fermi mixture. While the explicit supersymmetry breaking is unavoidable even in cold atomic systems, the energy gap in Goldstino spectra can be measured in such atomic systems. By comparing the energy gaps obtained from the Gell-Mann-Oakes-Renner relation and the random phase approximation, we elucidate how the Goldstino acquires the energy gap due to the explicit breakings. We also show effects of Goldstino pole on the fermionic single-particle spectral functions, which can be measured in the recent experiments.
Venue: via Zoom
Event Official Language: English
-
Seminar
Heavy tails in the brain
August 5 (Wed) at 10:00 - 11:00, 2020
Lukasz Kusmierz (Research Scientist, RIKEN Center for Brain Science (CBS))
In my talk I will discuss the relation between two seemingly unrelated measures in the brain that exhibit heavy tails: neuronal avalanches, i.e. bursts of activity with power-law distributions of sizes and lifetimes, and synaptic weights that are believed to be distributed according to the log-normal distribution. Many current models of neuronal avalanches do not rely on heavy-tailed synaptic weight distributions, suggesting that heavy tails of these two quantities may not be related. However, our recent theoretical considerations indicate that this independence no longer holds if two biologically relevant constraints are introduced, i.e., that neurons (1) receive many incoming connections and (2) do not spike if the membrane potential is below some positive threshold, e.g., in the absence of inputs. Under these assumptions we have shown that heavy tails of synaptic weights are necessary to generate biologically plausible low activity levels and associated neuronal avalanches. Our results suggest that the observed distributions of synaptic weights may play important functional roles in the brain.
Venue: via Zoom
Event Official Language: English
-
Seminar
Stability of ferromagnetism in many-electron systems
July 31 (Fri) at 16:00 - 18:10, 2020
Tadahiro Miyao (Associate Professor, Department of Mathematics, Faculty of Science, Hokkaido University)
First part Title: Stability of ferromagnetism in many-electron systems Abstract: I construct a model-independent framework describing stabilities of ferromagnetism in strongly correlated electron systems. Within the new framework, I reinterpret the Marshall-Lieb-Mattis theorem and Lieb’s theorem; in addition, from the new perspective, I prove that Lieb’s theorem still holds true even if the electron-phonon and electron-photon interactions are taken into account. I also examine the NagaokaThouless theorem and its stability. These examples verify the effectiveness of the new viewpoint. Second part Title: Order preserving operator inequalities in many-electron systems Abstract: In this talk, I will introduce order preserving operator inequalities and explain how these inequalities are applied to the mathematical study of ferromagnetism. As examples of applications, Lieb's theorem of the Hubbard model and its stabilities will be discussed in terms of the inequalities.
Venue: via Zoom
Event Official Language: English
-
Time-dependent bias emerges in population models with broad offspring number distributions
July 29 (Wed) at 10:00 - 11:00, 2020
Takashi Okada (Senior Research Scientist, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS))
It has been increasingly recognized that natural populations exhibit broad offspring number distributions, either because offspring numbers are strongly variable (e.g. marine organisms) or because range expansion processes generate jackpot events. In this talk, I will review the basic concepts of theoretical population genetics and then discuss how broad offspring number distributions affect the evolutionary dynamics.
Venue: via Zoom
Event Official Language: English
-
Seminar
DMWG special seminar : “The result of the XENON1T experiment and its implications”
July 22 (Wed) at 15:30 - 17:00, 2020
Masaki Yamashita (Associate Professor, Cosmic-ray Research Division, Institute for Space–Earth Environmental Research, Nagoya University)
Venue: via Zoom
Event Official Language: Japanese
-
Seminar
Human Time vs. Mouse Time in Embryonic Development
July 17 (Fri) at 16:00 - 17:00, 2020
Miki Ebisuya (Group Leader, European Molecular Biology Laboratory, Barcelona, Spain)
Different species have different tempos of development: larger animals tend to grow more slowly than smaller animals. My group has been trying to understand the molecular basis of this interspecies difference in developmental time, using the segmentation clock as a model system. The segmentation clock is the oscillatory gene expressions that regulate the timing of body segment formation during early embryogenesis. We have recently succeeded in recapitulating the segmentation clock from both human and mouse pluripotent stem cells, detecting oscillations and traveling waves in vitro. Interestingly, the oscillation period of human segmentation clock was 5-6 hours while that of mouse was 2-3 hours. Taking advantage of our in vitro system and simple mathematical models, we have been comparing the genome sequences and molecular processes of the segmentation clock between human and mouse to explain the interspecies difference in the oscillation period.
Venue: via Zoom
Event Official Language: English
751 events
Events
Categories
series
- iTHEMS Colloquium
- MACS Colloquium
- iTHEMS Seminar
- iTHEMS Math Seminar
- DMWG Seminar
- iTHEMS Biology Seminar
- iTHEMS Theoretical Physics Seminar
- Information Theory SG Seminar
- Quantum Matter Seminar
- ABBL-iTHEMS Joint Astro Seminar
- Math-Phys Seminar
- Quantum Gravity Gatherings
- RIKEN Quantum Seminar
- Quantum Computation SG Seminar
- Asymptotics in Astrophysics SG Seminar
- GW-EOS WG Seminar
- DEEP-IN Seminar
- NEW WG Seminar
- Lab-Theory Standing Talks
- QFT-core Seminar
- STAMP Seminar
- QuCoIn Seminar
- Number Theory Seminar
- Academic-Industrial Innovation Lecture
- Berkeley-iTHEMS Seminar
- iTHEMS-RNC Meson Science Lab. Joint Seminar
- RIKEN Quantum Lecture
- Theory of Operator Algebras
- iTHEMS Intensive Course-Evolution of Cooperation
- Introduction to Public-Key Cryptography
- Knot Theory
- iTHES Theoretical Science Colloquium
- SUURI-COOL Seminar
- iTHES Seminar