October 1 at 14:00 - 15:00, 2020 (JST)
Dr. Tomoaki Ishiyama (Associate Professor, Institute of Management and Information Technologies) Edit
via Zoom

We introduce the Uchuu suite of large high-resolution cosmological N-body simulations. The largest simulation, named Uchuu, consists of 2.1 trillion dark matter particles in a box of 2.0 Gpc/h. The highest resolution simulation, called Shin-Uchuu, consists of 262 billion particles in a box of 140 Mpc/h. Combining these simulations we can follow the evolution of dark matter haloes (and subhaloes) spanning from dwarf galaxies to massive galaxy cluster hosts. We present basic statistics, dark matter power spectra and halo (subhalo) mass function, to demonstrate the huge dynamic range and superb statistics of the Uchuu simulations. From the analysis of the evolution of the power spectra we conclude that our simulations are accurate enough from the Baryon Acoustic Oscillations up to very small scales. We also provide parameters of a mass-concentration model, which describes the evolution of halo concentrations, that reproduces our simulation data within 5% error for haloes with masses spanning nearly eight orders of magnitude at redshift 0<z<14. We make publicly available various N -body products, as part of Uchuu Data Release 1, on the Skies & Universes site. We also plan to release gravitational lensing maps, mock galaxy, X-ray cluster and active galactic nuclei catalogues in the near future.

*Detailed information about the seminar refer to the email.

Related News